Far Field Analysis: Toy Problem

Can do transformation of the fields immediately on the other side of the screen, and compute far field radiation pattern.

On a screen in the far field, diffraction pattern is seen: Airy rings (can see physically if a screen is placed appropriately)

Right side view at screen output:

Use far field Tx on near field captured by sphere of appropriate radius

Simulation Setup

Fraunhofer Approximation

- Under the condition that the observation point is very far away from the source, the Fraunhofer approximation for the intensity distribution of diffraction through an aperture applies
-For a circular this amounts to the fourier transform of the 'circ' function, up to a scaling factor

$$
I(r)=\left(\frac{A}{\lambda z}\right)^{2}\left[2 \frac{J_{1}(k w r / z)}{k w r / z}\right]^{2}
$$

- Where in the above:
- A = amplitude constant
- λ = wavelength
- $z=$ distance to observation screen
- $k=2 p i / \lambda$
- w = radius of aperture
- r = radius coordinate in observation plane
$\cdot J_{1}=$ Bessel function of the first kind, order 1

Simulation Results: Plane Wave @ Port

Norm E-Total

Far Field Pattern: For Plane Wave @ Port Excitation

But..no Airy Rings....

Plane Wave Background Excitation

Slice: Relazig eléetrichfield, x component (V/m) Slice: Kolelative electric feld, x component (V/m)

Far Field Results 2

Norm E-Far ^2, 3D half sphere

screen in $x-y$ plane
-At least I see rings....

Let's Compare Prev. Slide to Fraunhofer Approximation

- Under the condition that the observation point is very far away from the source, the Fraunhofer approximation for the intensity distribution of diffraction through an aperture applies
- For a circular this amounts to the fourier transform of the 'circ' function, up to a scaling factor

$$
I(r)=\left(\frac{A}{\lambda z}\right)^{2}\left[2 \frac{J_{1}(k w r / z)}{k w r / z}\right]^{2}
$$

- Where in the above:
- A = amplitude constant
- λ = wavelength
- z = distance to observation screen
- $k=2 p i / \lambda$
- w = radius of aperture
-r = radius coordinate in observation plane
- J1 = Bessel function of the first kind, order 1

Fraunhofer Approximation: Angular Distribution and Location of Maxima (dB scale for clarity)

Angular Distribution: Scatt Field Formulation

- So why is the intensity larger than it should be...
-Moreover, peaks and maxima are not at their correct angle, according to slide 9

