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Introduction: Widely interests have been devoted to  
studies on the propagation behaviors of the elastic waves in 
phononic crystals (PCs). These new artificial structures exhibit 
bandgaps in their spectra, where the propagation of waves is 
fully prohibited. The bandgaps in PCs may have potential 
applications in acoustic isolation, noise suppression and 
vibration attenuation, etc. While much reported work is 
focused on the PC systems with convex (circular or regular- 
polygonal [1]) holes. However, we noticed that, by introducing 
non-convex holes, photonic crystals may display a broad 
stopband or a dual-stopband, (or even multi-stopband). These 
works motivate investigations on the PCs with non-convex 
holes. In this paper, we will study the bandgaps of 2D PCs 
with cross-like (a kind of non-convex) holes in a square lattice 
(Figure 1). We will also extend our work to study 3D holey PCs 
with resonators in a simple cubic lattice (Figure 2). The study 
in this paper is relevant to the optimal design of the bandgaps 
in light porous materials.

Methods: We apply the Acoustic Module operating under 
the 2D/3D plane strain Application Mode. The free boundary 
condition is imposed on the surface of the hole, and the 
periodic Bloch boundary conditions on the two opposite  
boundaries of the unit cell [2-6], yielding the relationship  
between the displacements       for nodes on the boundaries:

The unit cell is meshed by using the default mesh. Still we 
require the Hermitian transpose of constraint matrix and in 
symmetry detection in the advanced solver parameter settings. 
The model built in COMSOL is saved as a MATLAB- 
compatible ‘.m’ file. The file is programmed to let the wave 
vector sweep the edges of the irreducible Brillouin zone, so 
that we can obtain the whole dispersion relations. 

Results: No bandgap appears in the 2D PC system with the 
square holes if the symmetry of the holes is the same as that 
of the lattice. However if the square holes are replaced with the 
cross-like holes (Figure 3), large bandgaps at lower  
frequencies are generated [2-3]. For 3D PCs, no bandgap 
appears in the systems with cubic or spherical holes. When the 
proposed six-necked or one-necked resonators are introduced 
(Figure 4), complete bandgaps in a low frequency range are 
generated [4]. The influences of the geometry of the cross-like 
holes and resonators on the bandgaps are discussed. Based 
on the vibration modes at the bandgap edges, spring-mass 
models and spring-pendulum models are developed to explain 
the mechanism of the bandgap generation [3-4].

Conclusions: We show in this paper that by careful 
design of the geometry of the resonators, complete  
bandgap with relatively low center frequency can be  
obtained for 2D and 3D PCs with resonators. The  
generation of the bandgap is due to the local resonance of 
the unit cell [2-6]. Spring-mass and spring-pendulum  
models are developed to predict the boundaries of the 
complete bandgap. The predicted results are in general 
agreement with the numerical results. 

a

b

c

a

c
b
d

a

c

b

d


X

R

M

X ' M '


X

R

M

 X

M

Figure 1. Cross-sections and finite element models of the unit cells of the 2D 
phononic crystals with (a) “+”- and (b) “x”-holes as well as their associated 
Brillouin zones.

Figure 2. The unit cells of two kinds of 3D PCs and their finite 
element models as well as their associated Brillouin zones. 
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Figure 3. Band structures 
of the phononic crystal 
systems with (a) square,  
(b) “+”- , (c) “x”- and (d) 
circular holes. The red  
solid and black dashed  
lines represent the mixed 
and shear wave modes,  
respectively.

Figure 4. Band structures 
of 3D holey phononic 
crystal in a simple cubic  
lattice with (a) the six- 
necked resonators; (b) the 
one-necked resonators, (c) 
cubic holes, and (d)  
spherical holes. The insets 
show the cross-section of 
the corresponding unit cell.
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