

E. A. BADEA¹, J. OESTERHELD¹, S. FRIEDEL², M. OLSSON²

¹Alstom (Switzerland) Ltd – Steam Business – Turbo-Generators ²COMSOL AB

Milan, 11th October 2012

we are shaping the future ALSTOM

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Introduction

Benchmarks

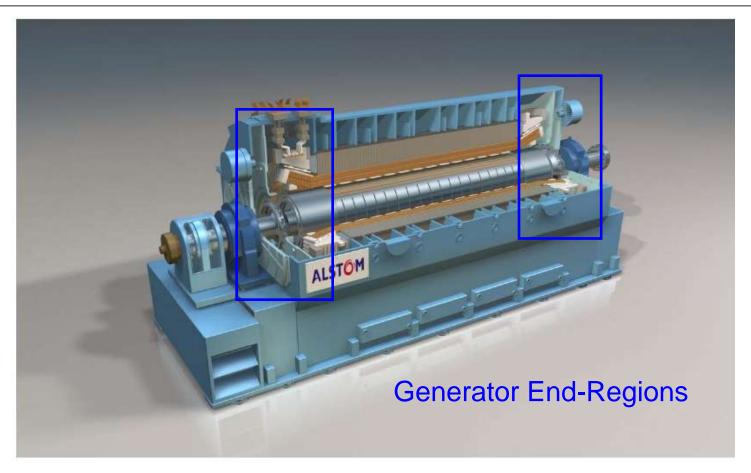
Conclusions

COMSOL Conference Europe – Milan, Italy, 2012 – 11/10/2012 - 2

Introduction

Multi-physics processes are triggered by leakage EM field of stator end winding and its associated effects manifesting at machine frontal end

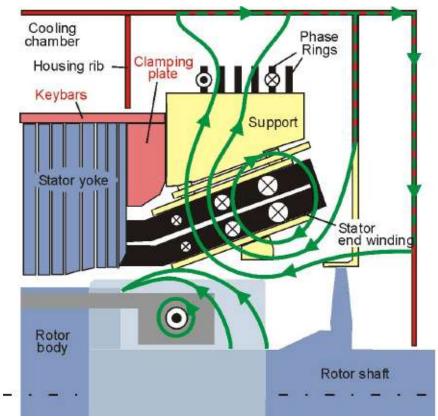
➤ A compilation of coupled phenomena with different EM, thermal, fluid flow and mechanical backgrounds are defining such processes


A few relevant topics for turbo-generator R&D are:

- Circulating currents in metallic components
- Local overheating
- EM forces acting on stator end winding
- Inter-laminar insulation fault in stator core
- Insulation design for stator end winding

COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 3

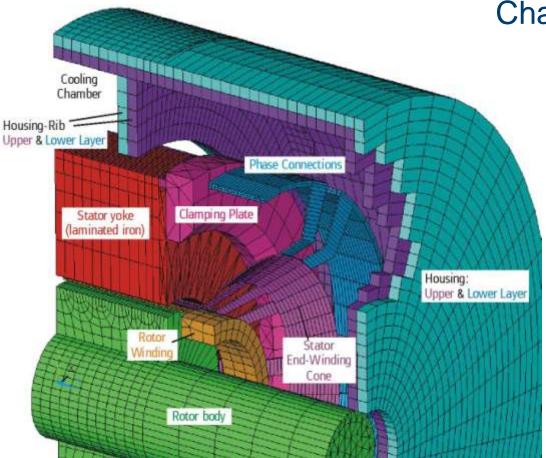
COMSOL ALSTOM



Turbo-Generator

COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 4

Longitudinal Section


Clamping plate

Stator Core in Factory

End Regions of the Turbo-Generator

COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 5

Challenges for FEM Software

COMSOL ALSTOM

- Distributed windings and complicated boundary shapes must be included in the 3D model to accurately predict hidden physics aspects
- Strong contrasts of material properties lead to badly defined problems where massively parallel sparse direct solvers may become imperative to handle the illconditioned matrices
- Severe electric and magnetic nonlinearities and small skin-depths require special features (smart transition layers, impedance boundary conditions)

COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 6

Benchmarks

Benchmark 1:

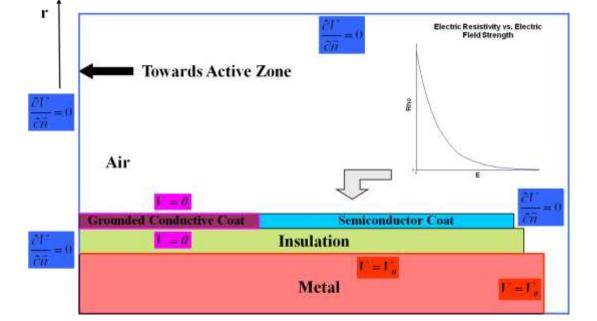
Insulation Design (Electrical Stress Grading)

Benchmark 2:

TEAM-7: Asymmetric Conductor with a Hole

Benchmark 3:

TEAM-21: Ferric Plate Shielded by a Copper Screen

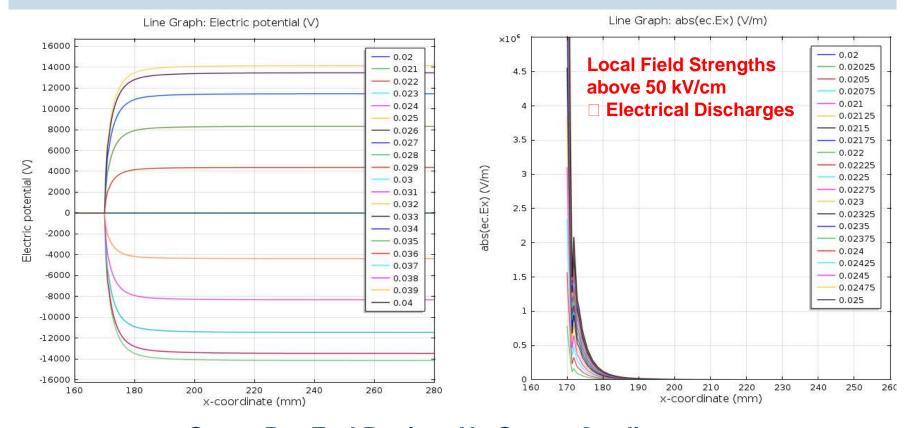


COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 7

Benchmark 1: Insulation Design (Electrical Stress Grading)

Stator End-Winding

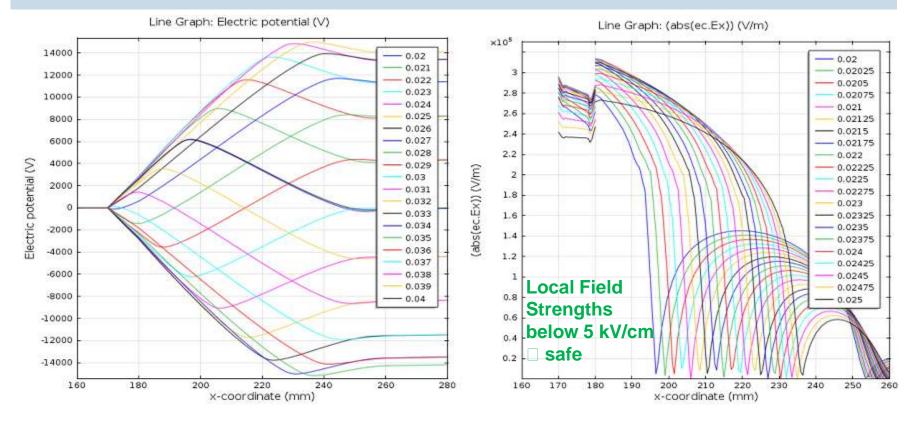
$$\nabla \cdot \left(-\sigma(\vec{E})\nabla V - \varepsilon(\vec{E})\nabla \left(\frac{\partial V}{\partial t}\right) \right) = 0$$


Z

COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 8

Benchmark 1: Insulation Design (Electrical Stress Grading)

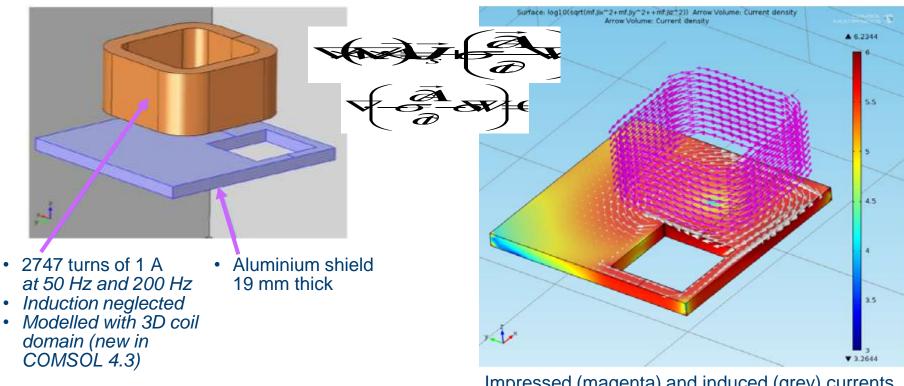
COMSOL ALSTOM


Stator Bar End Region: No Stress Grading Surface Potential and Electric Field Strength Distribution

COMSOL Conference Europe – Milan, Italy, 2012 – 11/10/2012 - 9

Benchmark 1: Insulation Design (Electrical Stress Grading)

COMSOL ALSTOM



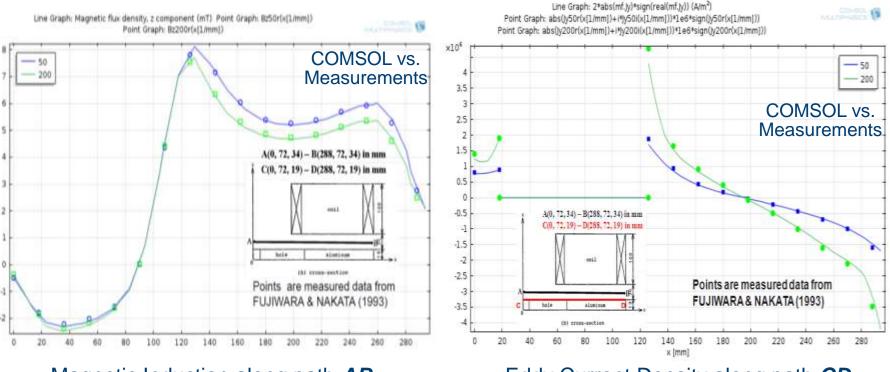
Stator Bar End Region: With Stress Grading Surface Potential and Electric Field Strength Distribution

COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 10

COMSOL ALSTOM

Benchmark 2: TEAM-7 Asymmetric Conductor with a Hole

Impressed (magenta) and induced (grey) currents at 50 Hz



•

TEAM-7: Geometry and Materials

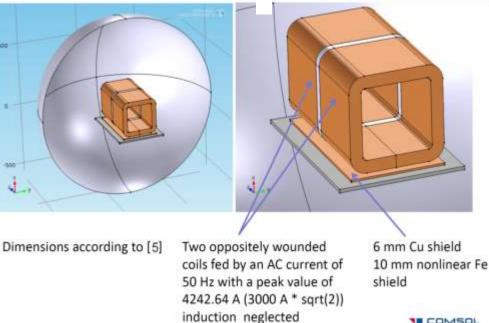
COMSOL Conference Europe – Milan, Italy, 2012 – 11/10/2012 - 11

Benchmark 2: TEAM-7 Asymmetric Conductor with a Hole

Magnetic Induction along path **AB** at 50 Hz and 200 Hz

Eddy Current Density along path *CD* at 50 Hz and 200 Hz

COMSOL ALSTOM



TEAM-7: Comparison of Results

COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 12

COMSOL ALSTOM

Benchmark 3: TEAM-21 Ferric Plate Shielded by a Copper Screen

COMSOL

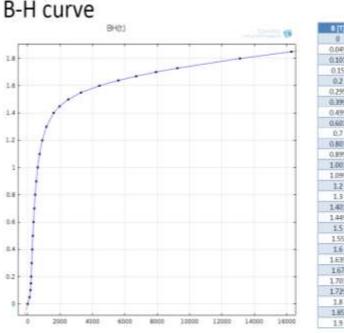
Copper:

Material Contents

	Property	Name	Value	Unit
~	Relative permittivity	epsilonr	1	1
~	Relative permeability	mur	1	1
~	Electrical conductivity	sigma	5e7	S/m

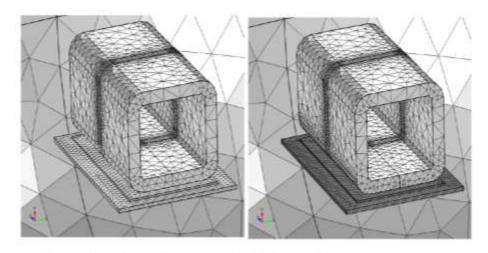
Nonlinear Iron

	Property	Name	Value	Unit
4	Electrical conductivity	sigma	6.484e6[S/m]	S/m
~	Relative permittivity	epsilonr	1	1
4	normH	normH	sqrt(H1^2+H2^2+H3^2)	A/m
~	Magnetic field norm	normH	HB(normB[1/T])[A/m]	A/m
	Magnetic flux density	normB	BH(normH[m/A])[T]	Т
	normB	normB	sqrt(B1^2+B2^2+B3^2)	Т



TEAM-21: Geometry and Materials

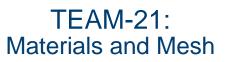
COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 13


COMSOL ALSTOM

Benchmark 3: TEAM-21 Ferric Plate Shielded by a Copper Screen

 (1) 	# [A/m]
. 0	
0.049	115
0.101	171
0.15	196
0.2	214
0.299	245
0.399	279
0.499	356
0.601	359
0,7	405
0.801	461
0.899	528
1.001	636
1.099	732
1.2	898
1.3	1154
1.401	2606
1.449	1965
15	2506
1.55	3291
1.6	4430
1,639	\$599
1.67	6698
1,701	7926
1.729	9251
1.8	13105
1.85	16290
1.4	19942

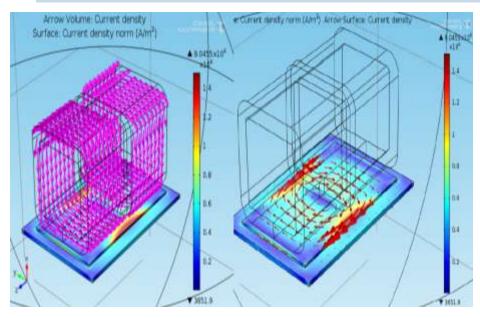
Mesh

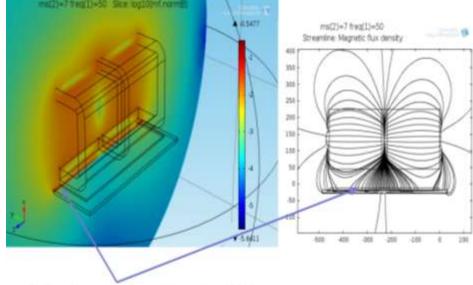


Mesh

COMSO

- Two variants with maximum mesh size in the shielding layers ms
- A) ms=15 mm, 99'000 Tets, 652 kDOFs
- B) ms=7 mm, 283'730 Tets, 1.83 MDOFs


Magnetization Curve for Ferric Plate



COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 14

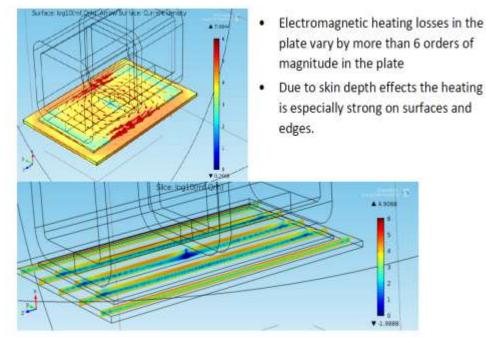
COMSOL ALSTOM

Benchmark 3: TEAM-21 Ferric Plate Shielded by a Copper Screen

Field enhancement in nonlinear iron shield

Magnetic Induction in Iron Plate (Log Scale) at y=0

Source and Induced Current Density



TEAM-21: Qualitative Results

COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 15

COMSOL ALSTOM

Benchmark 3: TEAM-21 Ferric Plate Shielded by a Copper Screen

Power Losses in Iron Plate (Log Scale)

Integrated Losses (W)

	freq	Cu Plate	Iron Plate	Total
COMSOL	ms=15	11.20	8.89	20.09
COMSOL	ms=7	11.38	6.19	17.57
Chen et. Al. 2006		10.85	5.37	16.22
Measured				15.24

- The total calculated power losses differ by about 15% from measurements
- While copper losses do not change with the mesh size, the iron losses do improve when a refined mesh is used
- The discrepancy can be explained by the linear approach used by the harmonic solver (no higher harmonics are considered)

TEAM-21: Comparison of Results

COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 16

Summary

- Three different benchmarks were selected to validate COMSOL results against measurements
- These test problems were chosen according to relevant topics of interest for turbo-generator manufacturers
- Special features such as thin transition layers, impedance boundary conditions, or the default algorithms handling electrical and magnetic nonlinearities for both time and frequency domain solvers, were carefully investigated
- Preliminary numerical results were encouraging and indicated that COMSOL is capable of solving such problems, which are daily business for turbo-generator R&D

COMSOL Conference Europe - Milan, Italy, 2012 - 11/10/2012 - 17

Thank you for your attention.

www.alstom.com

COMSOL

we are shaping the future ALSTOM

