COMSOL CONFERENCE ROTTERDAM2013

Metal Foam Tube Flow Modeling

Thorsten Spillmann, PhD Canditate Universtiy of Warwick UK | CSIRO Australia

Incentive for Study

Test Objects: 3 types of aluminum foams brazed into 19mm(ID) x 200mm(L) tubes

- Metal foam inserts are much suggested inserts for convective heat transfer applications and designed reactors
- Flow modeling provides useful insights into intensity of interaction between working fluid and solid ligament, having direct implications to system pressure drop

(1) Pore-scale 3D Laminar Flow Model: dp_{cell} vs. u_{cell} .

(2) Fit to Forchheimer Porous Medium Model: Derivation of characteristic parameters (K_{foam}, C_{foam})

(3) Brinkmann-Forchheimer Porous-Medium Model of flow through Test Tubes: comparison to experimental pressure drop data

Test Objects and Modeling Approach

Test Objects: 3 types of aluminum foams brazed into 19mm(ID) x 200mm(L) tubes

CSIRC

Idealized modeling cell: Tetrakaidecahedron made up of 36 rods of uniform length forming 8 hexagonal and 6 square faces with

(1) Pore-scale 3D Laminar Flow Model: dp_{cell} vs. u_{cell} .

(2) Fit to Forchheimer Porous Medium Model: Derivation of characteristic parameters (K_{foam}, C_{foam})

(3) Brinkmann-Forchheimer Porous-Medium Model of flow through Test Tubes: comparison to experimental pressure drop data

3D Laminar Flow Model

- Isothermal flow
- Air as incompressible fluid •
- Array of 25 cells
- Normal mesh: >434,796 elements •

5 PPI

Comparison of velocity streamlines of foams at $u_{in}=3m/s$

(2) Characteristic flow parameters: Permeability K [m²], Form Drag Factor C [m⁻¹]

Derivation of Characterstic Flow Parameters

WARWICK

2D Porous Medium Model

WARWICK

Conclusions

- Porous medium flow characteristics have successfully been derived from 3D-pore scale flow modeling
- The confining tube-wall has a notable effect on overall the pressure drop
- The difference in surface area of ideal and actual structure required a correction which was more prominent at larger pore sizes
- The effect of ligament cross-section shape is stronger at smaller pore sizes

COMSOL CONFERENCE ROTTERDAM2013

Thank you for your attention

Relative Density (1)

