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Impact of Mixing on Chemical Unit Operations in
Pharmaceutical Industry

¢ Many chemical unit operations in drug substance production are performed in stirred
tank reactors and are transport dependent. Therefore, they can be mixing sensitive.

— Biphasic reactions

— Extraction

[— Crystallizations ]

¢ Multiple mixing parameters must be
considered during scale-up.

_ Lab Reactor
— Reactor and impeller geometry 0.1-40 L

— Shear rate

— Specific energy dissipation rate

30-500 L

— Power input per volume Plant Reactor

1000- 40000 L
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Case Study: Crystallization
- Drug Substance Purification Process
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¢ Typical crystallization process operations: @
— Antisolvent* addition to achieve supersaturation Agglomeration
— Heating to increase nucleation and growth Kinetics O

— Cooling and aging for the completion of crystallization @
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Mixing Sensitivity in Crystallization

Potential Consequences

 Fast uncontrolled nucleation

Fast mixing * Particle attrition
* De-agglomeration
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*rpm - rotations per minute
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COMSOL Model to Assess Mixing Sensitivity
in Drug Substance Crystallization

+ Solve Navier-Stokes equation on the 3D reactor 9p o |
—+V-(pu) =0, - Contmuity Equation (1)
geometry ot

. . du 1
— ROtatlng Machlnery, Turbulent Flow k-w model B + (u-Viju= w;?p +F + %?Eu, ————— Equations of Idotion (Z2)

e Frozen rotor study - Reynolds-averaged NS (35
Aot

e Time dependent study

¢ Account for specific reactor geometry and
configurations

¢ Provide solution of the flow field to determine
velocity, shear and energy dissipation rate profiles
throughout the reactor

+ Provide fast estimation of mixing attributes at scale
¢ Couple multiple physics
— Flow

— Reactions/transport of species

— Heat transfer

%Z% Bristol-Myers Squibb



Mixing Attributes for Fast and Slow Mixing
in Lab Reactor

Specific energy
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Shear Rate Correlates with Particle Size and
Aggl()meration Index Next Step: Extension of COMSOL

modeling to the plant reactors to
I N N T 160 explore the studied correlations at

£ : :
7T 100 rpm g 1‘2‘8 ¢ scale and to predict the particle
6 400 rpm E 100 size at manufacturing scale
X Z' 800 rpm 2 go Initial analysis: Low shear rate at
E al o 60 plant scale - risk of agglomeration
9 . S 40 [ J
o -
S 20 e, ® e.
1t B0
0 1IN 0 50 100 150
10° 10° Av. Shear Rate (1
Specific Dissipation Rate v. Shear Rate (1/s)
107 F Particle attrition, breakage
0ol and de-agglomeration
0.8} %, 25
0.7 %
o3 El
' =
0.4 S 15
0.3 It : g -
L 1]
g't‘{: mm h | g 1 No agglomeration
10° 10 10’ w 0
Shear rate (1/s) 2:" Plant scale * Represents the
extent of

VAV Bristol-Myers Squibb 0 50 100 150 agglomeration v



Summary

¢ High shear rate enhances de-agglomeration and particle
breakage, reducing particle size and agglomeration index.

¢ COMSOL is helpful in estimating the mixing attributes
that can be used to predict the crystallization process
behavior and final drug substance particle properties.
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BACK-UP SLIDES
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Correlation at Scale-up
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