Presented at the COMSOL Conference 2008 Hannover

Modeling of Vibrating Atomic Force Microscope's Cantilever within Different Frames of Reference

E. Kamau and F. Voigt

Division Microrobotics and Control Eng. (AMiR), University of Oldenburg, Germany

Contents

- Introduction
- Assembled Geometry Objects
- Description of two different models
 - Inertial frame model
 - Accelerated frame model
- Setting up the Models
- Results
- Discussion and Outlook

LDEN

• Objective

 Put up FEM based models for the simulation of cantilever vibration modes as tools for the on going work at the AFM – group in AMiR

OLDENBURG

 Assess the feasibility of simulating cantilever beams in accelerated frames of reference

Field of research of this group includes among others:

- Manipulation by Lateral Cantilever Vibrations and Oscillations for AFM based nanohandling
- Automation of AFM based nanomanipulation

Division of Microrobotics and Control Engineering Prof. Dr.-Ing. habil. S. Fatikow

Assembled Geometry Objects

- Components were designed using Autodesk Inventor and imported into the COMSOL environment using the *CAD import tool*.
- Details of various components:
 - Cantilever: Single crystalline silicon (450 µm X 50µm X 2µm).

OLDENBURG

- Piezo plate: Material PIC155

Division of Microrobotics and Control Engineering Prof. Dr.-Ing. habil. S. Fatikow Edwin Kamau COMSOL Conference 2008 Hannover

a. Inertial Frame Model

- Components: The chip, cantilever, holder and the piezo plate
- Excitation with 0.5 V across the piezo plate; frequency f = 13600 Hz
- Two mechanical and one electrical boundary conditions.
- Multiphysics model: stress-strain and the piezo domain from the MEMS module.

OLDENB

b. Accelerated Frame Model

- Aims at simplification of the simulation process.
- Components: The chip and the cantilever beam
- Multiphysics model: Only stress-strain domain
- Frequency response implemented in MatLab.
- One mechanical boundary condition.
- Sought Variables:
 - displacements *u*, *v* and *w*
 - from the normal stress ($\boldsymbol{\varepsilon}$) and strain ($\boldsymbol{\gamma}$) a).

D) 6

Relationship between Vertical Coordinates (z,z*):

$$z$$
 = $z^* + Asin(\omega t)$

Newton's Second Law:

 $m\ddot{z}$

$$= m\ddot{z^*} - mA\omega^2\sin(\omega t)$$

 $\rho := m/V$

Fictitious Force:

$$F_z^* := F_z + mA^2 \sin(\omega t) = m\ddot{z^*}$$

Fictitious Load:

D

Pr

$$L_f := \rho A \omega^2 \sin(\omega t) ;$$

Edwin Kamau COMSOL Conference 2008 Hannover

Vibration Amplitude

Simulation of the actuation system:

• Frequency Response

- Determine the vibration amplitude of the piezo plate at the holder (Frequency = 13600 Hz and Voltage = 0.5 V): Result - (A_{sim} = 0.0430 nm)
- Frequency dependent

Eigenfrequency Response

- The 1st 20 eigenfrequencies of the piezo plate and holder (between 5.62x10⁵ 1.12x10⁶ Hz), hence no influence on the cantilever.
- For every eigenfrequency max displacement is shown

Division of Microrobotics and Control Engineering Prof. Dr.-Ing. habil. S. Fatikow

Results from both models

Division of Microrobotics and Control Engineering Prof. Dr.-Ing. habil. S. Fatikow Displacement amplitude at the tip of the cantilever. Resonance peak at the frequency:

 $f_{Mod1} = f_{Mod2} = (13.600 \pm 0.005) \text{ kHz}$

DINN

 This corresponds well with the analytically determined frequency for a clamped-free cantilever beam

 $f_{theo} = 13.586 \ kHz$

and the frequency specification range stated by the manufacturer

 $f_{Manu} = 13 \pm 4 \ kHz$

Simulation time for both models (CPU time):

$$T_{Mod1} = 3.375 * T_{Mod2}$$

Conclusion

Discussion

- Simulation of cantilever's vibration modes, when implemented in suitably chosen frames of reference can:
 - Help reduce computational burden
 - Shorten calculation time
- Results for the resonance frequency agree within ± 5 Hz.
- Lack of damping leads to resonance catastrophe, thus no comparison amplitude possible in this case

Outlook

- Implementation of damping
- Comparison of amplitude values with experimental results

OLDEN

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft in project NanoLatVib (FA 347/24-1).

Division of Microrobotics and Control Engineering Prof. Dr.-Ing. habil. S. Fatikow