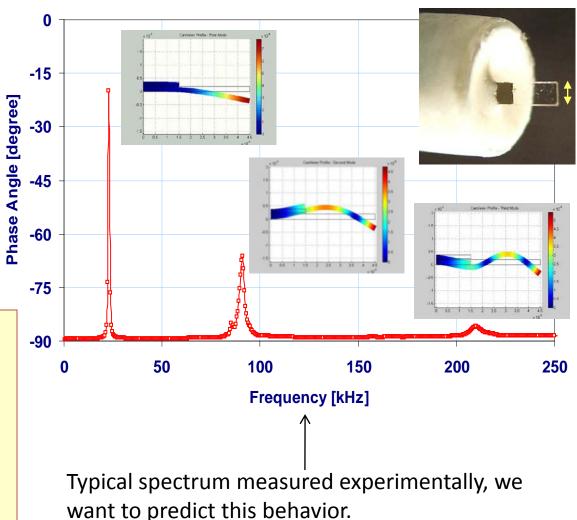
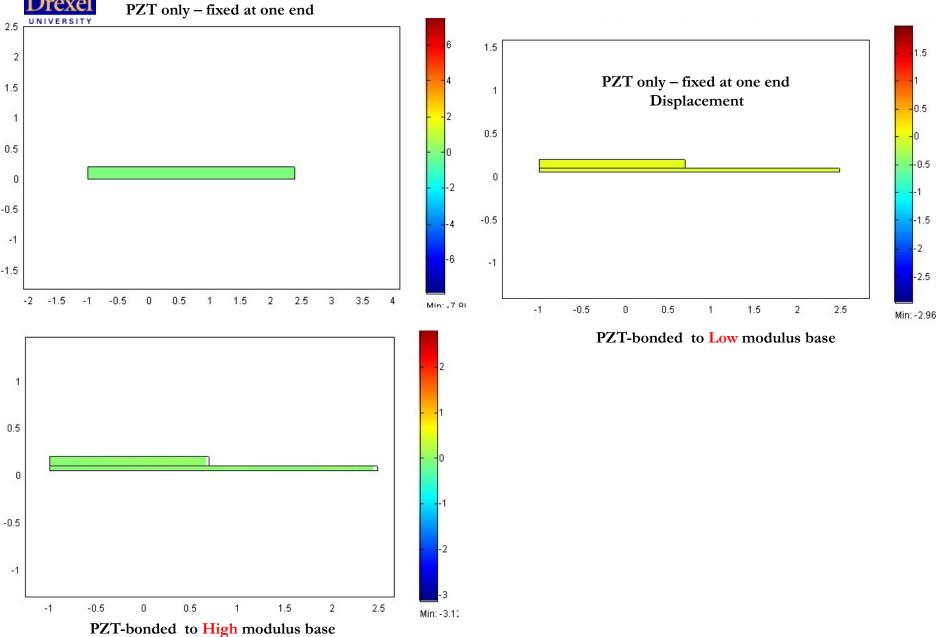

The Origin of Mass-change Sensitivity in PEMC sensors: *Experimental and FEM Vibrational Analysis*

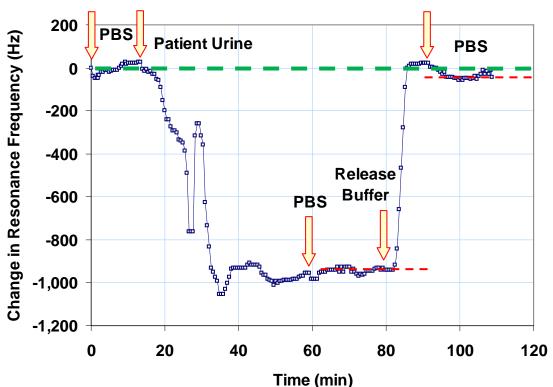
Blake Johnson and Raj Mutharasan Department of Chemical and Biological Engineering Drexel University Philadelphia, PA 19104



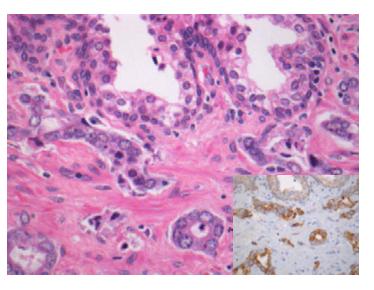
Piezoelectric-Excited Millimeter-sized Cantilever (PEMC) Sensors

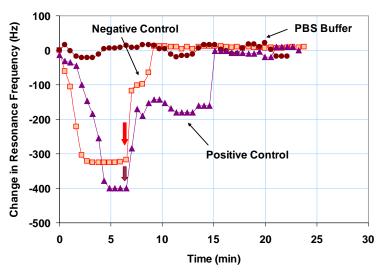

Sensing Principle

- Resonant frequency depends on cantilever's mass.
- Surface is immobilized with a recognition molecule (eg. Antibody; ssDNA).
- When target attaches to the cantilever, mass changes, and resonant frequency changes.



Oscillation characteristics of PEMC Sensors




AMACR in patient urine – Patient 3

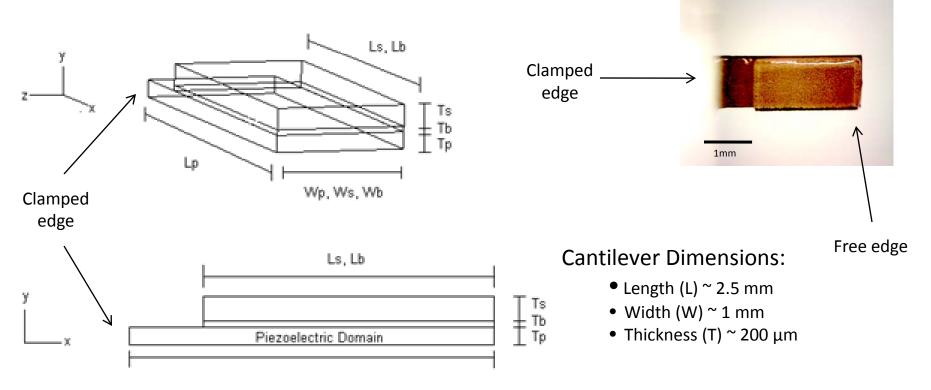
Post **PEMC**_a Gleason **PEMC**_a Case # **Biopsy PSA Value** Control Age Score Response Urine Stage 11.6 ng/mL Case 1 61 pT2c -4,314±35 Hz 10±21 Hz 7 Case 2 83 pT2a 12.6 ng/mL 6 -269±17 Hz 10±6 Hz Case 3 64 8 pT2c 78.4 ng/mL -977±64 Hz -63±14 Hz Case 4 59 7 pT2b 4.6 ng/mL-600±31 Hz -35±24 Hz 65 7 Case 5 PT2c 2.0 ng/mL -801±81 Hz -20±15 Hz

Prostate cancer biomarker: α -methylacyl-CoA racemase (AMACR)

Maraldo, E.; Garcia, R; Mutharasan, R. 2007. Analytical Chemistry, 79 (20): 7683-7690

Notable detection applications and Motivation

Detection Application	Sensitivity
Bacillus anthracis (Anthrax) spores in air	5 spores/L
E. coli O157:H7 in food media	1 cell/mL
Prostate cancer biomarker (AMACR) in urine	2 fg/mL


Motivation:

- Vibration characteristics of PEMC sensors are complex and remain unexplored.
- Understand the origin of mass-change sensitivity in PEMC sensors using modeling.
- Use simulation as tool for creation of other sensitive structures.
- Structure the model to simulate the quantities we measure experimentally.

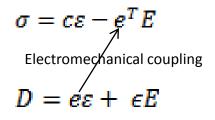
Campbell, C; Mutharasan, R. **2007**. *Biosensors and Bioelectronics*, 23: 1039 – 1045 Campbell, C; Mutharasan, R. **2007**. *Analytical Chemistry*, 79 (3): 1145 – 1152 Campbell, C; Mutharasan, R. **2007**. *Environmental Science and Technology*, 41 (5): 1668 – 1674 Maraldo, D; Garcia, F; Mutharasan, R. **2007**. *Analytical Chemistry*, 79 (20): 7683 - 7690

Schematic of PEMC sensor and Experimentally Fabricated Sensor

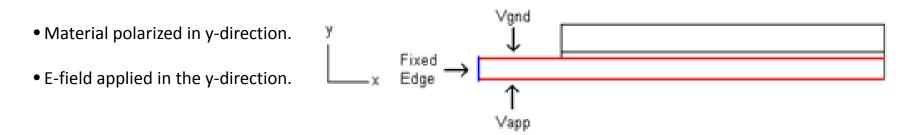
Excitation and Measurement Principle:

- Actuation via harmonic E-field along polarization axis of PZT.
- Inverse piezoelectric effect generates expansion/contraction of the PZT material.
- The resonant frequencies are measurable by the electrical impedance of the piezoelectric domain.

Use of COMSOL Multiphysics


COMSOL Modules Used:

- Structural Mechanics Module
- Piezoelectric effects
- Piezo Plane Stress


Damped Eigenfrequency Analysis
Frequency Response Analysis

• Simulations in vacuum

Piezoelectric Material Constitutive Relations (anisotropic)

Boundary Conditions

Voltage applied = $0.1 \sin (\omega t)$

Frequency Response Analysis

Scalar potential equation: $-\nabla (\varepsilon_0 \varepsilon_r \nabla V) = \rho_v$

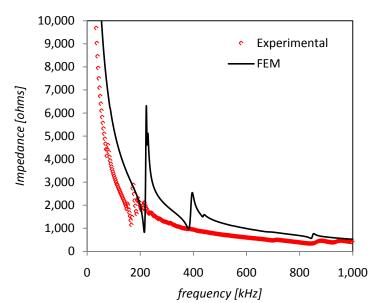
Quasi-static electric currents equation:

 $-\nabla\left((\sigma_{e}+j\omega\varepsilon_{0}\varepsilon_{r})\nabla V\right)=\,\rho_{v}$

Additional expressions employed:

- excitation frequency: *freq_smpz3d*
- electrical impedance: V/abs(I)
- phase angle:

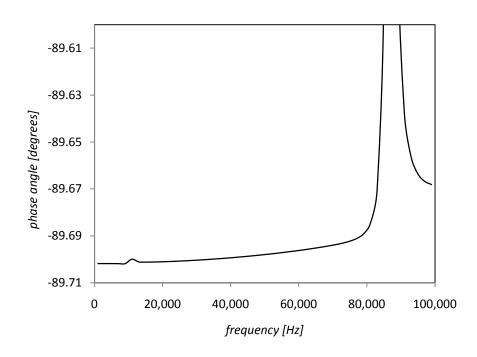
tan⁻¹ [Im(I)/Re(I)]


0 Experimental -10 FEM -20 phase angle [degrees] -30 -40 -50 -60 -70 -80 -90 200 400 600 800 1,000 0 frequency [kHz]

Loss factor damping:

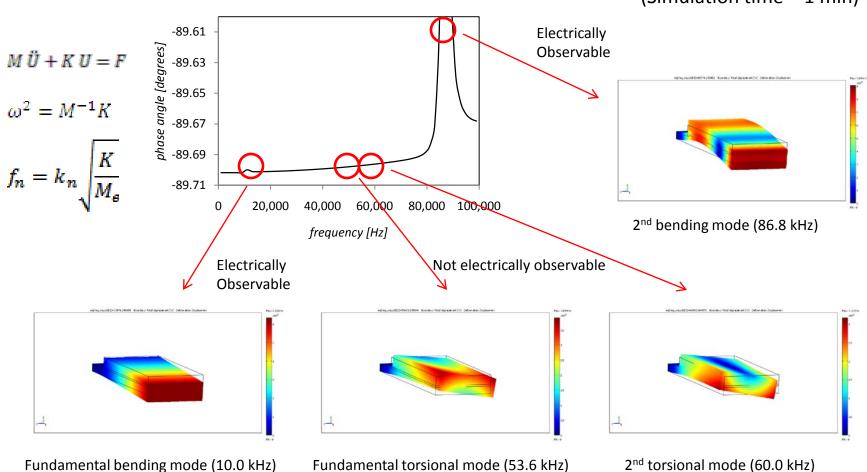
$$G^* = G' + jG'' = (1 + j\eta)G'$$

Loss Factor = $\eta = \frac{G''}{G'}$


*G**,*G*', and *G*" are stress relaxation function of viscoelastic material, storage modulus, and loss modulus, respectively.

(Simulation time ~ 30 min)

Fundamental Mode Range (0 – 100 kHz): FEM frequency response analysis


* Contains modes of vibrations sensitive to mass-changes.

* 2nd mode (~80 kHz) used most frequently for detection due to high Q- factor.

* Only 2 resonances in the range of 0 – 100 kHz are electrically measurable using impedance.

Damped Eigenfrequency Analysis

(Simulation time ~ 1 min)

Summary

- Used *COMSOL Multiphysics* to simulate the frequency response of the PEMC sensor by impedance characterization.
- Simulation qualitatively predicts the experimentally measured frequency response.
- Assessed the lower order modes of vibration that have been used experimentally for detection using *COMSOL's* eigenfrequency analysis.
- PEMC sensor is sensitive in the bending mode.
- Torsional modes of vibration do not give rise to electrically observable resonances using impedance characterization.

Recommendations

• Recommendations to COMSOL Multiphysics developers

- Modeling of nonlinear stress-strain material effects.
- Modeling of nonlinear piezoelectric effects.
- Addition of more realistic damping models.

- Acknowledgements
 - Advisor: Dr. Raj Mutharasan
 - This work was made possible by National Science Foundation Grant CBET-0828987.