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Introduction 
 

COMSOL Multiphysics is employed to model, simulate and predict the performance of a high Q, in-plane 

rotational resonating MEMS sensor (figure 1). The resonating sensor disk is driven by thermal expansion 

and contraction of the support tethers due to AC joule heating.  The resonant frequency is sensed by 

stationary contacts.  For cost reduction, the relatively simple, low cost SOIMUMPS fabrication process is 

chosen.  The major limiting factors on performance are thermal response (drive mechanism) and slide film 

damping.   

 

 
Figure 1: Top view of sensor 

 

Use of COMSOL Multiphysics 
 

The goal of the Finite Element Modeling is to verify the electrothermal drive mechanism.  Initial resonant 

frequencies are found using the COMSOL Multiphysics Eigenfrequency solver in the Solid Stress-Strain 

application mode.  MEMS Joule Heating and Solid Stress-Strain Multiphysics applications are coupled to 

simulate the physical response of the sensor (in a vacuum) in the time domain.  To account for thermal loss 
from the sensor’s surface, a convection model with simplified sensor geometry is developed using axial 

symmetry in the COMSOL Multiphysics Heat Transfer module (figure 2).  Lastly, an effort is being made 

to accurately model the sensor’s time domain oscillation in air. 

 

 

Expected Results 

 

Time dependent cooling simulations in COMSOL Multiphysics will show the optimal geometry for thermal 

response time.  Time consuming 3D, time dependent moving mesh simulations will show the sensor’s 

resonance amplitude reduction due to air viscosity compared to vacuum performance.  (This resonance 

amplitude in air will be compared to in process lab testing.)  Preliminary results from comparing simulated 
and experimental data show the effect of convection to be much less than that simulated using bulk physics 

properties (figure 3). 
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Edge Displacement vs. V DC
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Figure 2. Natural convection 

streamlines and temp. (color) of 

sensor and surrounding air in its 

micro-machined well. 

Figure 3. Experimental (dashed line) and simulated displacement of 

Contact Arm vs. DC voltage varying the convective heat transfer 

coefficient (h). 

 

 
 

Conclusion 
 

Several models of the sensor are found to be ineffective because of the relatively slow thermal response in 

comparison to the sinusoidal period at resonance.  COMSOL Multiphysics has saved fabrication costs of 
these failed design revisions.  (Changes in design for increased performance will be shown.)  The cooling 

effect of natural convection was found to be much less than expected from the literature.  Thus, a broader 

implication of this study is the convection model at the hundreds of microns level. 
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