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Abstract 
Modern gas turbines suffer of the phenomenon 
of combustion instability, also known as 
“humming”. The main origin of the instability 
is considered to be related to the interaction 
between acoustic waves and fluctuations of the 
heat released by the flame. Pressure 
oscillations may cause many damages of the 
gas turbine and loss of control of the 
combustion process. This paper presents a 
novel numerical method in which the 
governing equations of the acoustic waves are 
coupled with a flame heat release model and 
solved in the frequency domain. The paper 
shows that a complex eigenvalue problem is 
obtained that can be solved numerically by 
implementing the governing equations in 
COMSOL Multiphysics. This procedure allows 
one to identify the frequencies at which 
thermoacoustic instabilities are expected and 
the growth rate of the pressure oscillations, at 
the onset of instability, when the hypothesis of 
linear behaviour of the acoustic waves can be 
applied. Some test cases and examples of 
applications are described in the paper. 
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1.  Introduction 
 
In modern gas turbines equipped with low 
NOx emission combustion systems, the 
phenomenon of acoustically driven 
combustion instability (known also as 
"humming") represents a severe risk for the 
safe operation of the plant, since it causes 
intense vibrations that may damage the engine. 
The origin of such phenomenon is not 
completely understood and, moreover, it is not 
clear which could be the best techniques 
suitable for either decreasing the risk of 
instability or lowering its damaging effects [1-
4]. This paper shows a method for predicting 
the onset of acoustically combustion 

instabilities in gas turbine combustors. The 
basic idea is that the governing equations of 
the acoustic waves can be coupled with a 
flame heat release model and solved in the 
frequency domain. This procedure allows one 
to identify the frequencies at which 
thermoacoustic instabilities are expected and 
the growth rate of the pressure oscillations, at 
the onset of instability, when the hypothesis of 
linear behaviour of the acoustic waves can be 
applied. A similar approach has been carried 
out by Martin et al. [5], even if they used a 
three-dimensional finite element based in-
house acoustic solver called AVSP. 
The present method can be applied virtually to 
any three dimensional geometry, provided the 
necessary computational resources that are, 
anyway, much less than those required by 
Computational Fluid Dynamics (CFD) 
methods. Furthermore, in comparison with the 
lumped approach that characterize popular 
Acoustics Networks, the proposed method 
allows one for much more flexibility in 
defining the geometry of the combustion 
chamber. The paper shows that different types 
of heat release laws, for instance, heat release 
concentrated in a flame sheet as well as 
distributed in a larger domain, can be adopted. 
Moreover, experimentally or numerically 
determined flame transfer functions, giving the 
response of heat release to acoustic velocity 
fluctuations, can be incorporated in the model. 
To establish proof of concept, the method is 
validated against test cases taken from 
literature and moreover an application to an 
annular combustion chamber is proposed. 
 
2.   Equations 
 
The problem is solved in the frequency domain 
using the eigenfrequency “Pressure Acoustics” 
application mode. Since in gas turbine 
combustion chamber the flow velocity is 
generally far below the sound velocity, the 
flow velocity is negligible, except that in some 
areas, such as conduits of the burners. These 
areas, in terms of propagation of pressure 
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waves, can be treated as separate elements that 
can be modelled by means of specific transfer 
function matrices, obtained experimentally or 
numerically through CFD or aeroacoustics 
codes. Therefore, the flow velocity is 
considered negligible in comparison with the 
sound velocity, within the computational 
domain. Moreover, the effects of viscous 
losses and heat conduction will be neglected, 
and the fluid considered an ideal gas, that 
means that the ratio of the specific heats is 
supposed constant. Under such hypotheses, in 
presence of heat fluctuations, the 
inhomogeneous wave equation can be 
obtained: 
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where q' is fluctuation of the heat input per 
unit volume, overbar denotes a time average 
mean value and the prime a perturbation. The 
term at the RHS of Eq.(1) shows that the rate 
of non-stationary heat release creates a 
monopole source of acoustic pressure 
disturbance. In the eigenvalue analysis as well 
as in a frequency response analysis, pressure 
wave can be splitted into a function of position 

)(ˆ xp  multiplied by a complex exponential that 

is a function of time 

                      )exp()(ˆ' tipp x ,                     (2) 

where   is complex variable, comprising a 
real part that gives the frequency of 
oscillations )2/()Re( f , while imaginary 

part gives the growth rate at which the 
amplitude of oscillations increases per cycle 

)Im(g . If the growth rate is positive, 

fluctuations over time will grow exponentially 
with time. Within the harmonic analysis, heat 
release fluctuation q'  and acoustic velocity u’ 

are also functions of time of the type 
)exp(ˆ' tiqq  and )exp()(ˆ' tiuu x . Then, 

using Eq.(1) and Eq.(2), the acoustic pressure 
waves are governed by the following equation 
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where iω=λ   and c is the velocity of the 
sound. Eq.(3) shows a quadratic eigenvalue 
problem that can be solved by means of an 
iterative linearization procedure [8]. 
The finite element method allows us to model 

the heat release fluctuation q'  as a variable of 

space, so that it is possible to describe the form 
of the flame in a very flexible manner. In this 
work, however, the flame is modelled as a 
straight flame sheet placed at the exit of the 
burner, in order to accomplish the aim of 
comparing the numerical results with those of 
the cited cases available in literature. 
The boundary conditions are considered 
basically as three types: sound hard (wall), 
sound soft and normal acceleration. The solid 
walls are considered as sound hard, while the 
plenum inlet and the combustion chamber 
outlet walls changes with the different test 
cases analyzed. 
 
3.   Tests on Linear Combustion Chamber 
 
The preliminary application tests are carried 
out on a duct, with uniform cross-sectional 
area, mean temperature, constant density and 
no mean flow. Such a scheme is the same 
examined by Dowling and Stow in [6] and was 
chosen as a benchmark. The duct is connected 
to a large plenum at the inlet and is provided of 
a restriction at the exit (Figure 1). In this one-
dimensional case, the planar wave hypothesis 
can be adopted and the only abscissa x along 
the duct is used to describe the variation of 
acoustic pressure and velocity in the duct. A 
planar flame sheet is supposed to be located at 
the abscissa x=b. Under the no flow 
hypothesis, the following boundary conditions 
are assumed 

                 0)(',0)0('  lup .                  (4) 

 

Figure 1 – Simplified scheme of flame location in a 
straight duct with uniform cross section. 

Dowling and Stow offer an example where the 
heat release fluctuation is supposed to be 
concentrated in a single plane placed at x=b 
(Figure 1) and related to the velocity 
fluctuation of the oncoming flow with a time 
delay 
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where Q’(t) is the rate of heat input per unit 
area of the cross section of the duct and 
subscript 1 denotes conditions just upstream of 
this region of heat input, that is 

),(')('1 tbutu  . The Eq.(5) relates the 

fluctuation of heat input rate per unit volume, 
q’(x,t), to the fluctuation of the heat input rate 
per unit area of the cross section, Q’(t), 
through the Dirac’s delta )( bx  . The 

nondimensional number  gives a measure of 
the intensity of the heat fluctuations while  
can be estimated as the convection time from 
fuel injection to its combustion. 
In the FEM eigenvalue analysis, the heat 
release fluctuations are supposed to occur in a 
very thin volume with thickness s and the 
Dirac’s delta )( bx  that appears in Eq.(9) 

can be approximated as: 
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Using Eq.(2), setting iω=λ   and simplifying, 
Eq.(3) becomes 
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that is the governing equation to be solved in 
the internal domain by the FEM method. 

 

Figure 2 – Variation with β of the normalized 
frequency for the first mode of the duct with heat 
release fluctuation concentrated in a flame sheet. 
Time delay τ=0 and b=l /10. Symbols represent the 
results from the acoustic code. Line is obtained from 
the analytic solution.  

 

Figure 3 – Variation with β of the growth rate for 
the first mode of the duct with heat release 
fluctuation concentrated in a flame sheet. Case 
b=l/10. Symbols represent the results from the 
acoustic code. Lines are obtained from the analytic 
solution.  

Figure 2 and Figure 3 show the comparison of 
the results obtained from the acoustic code and 
the results obtained from the application of the 
planar wave theory. It appears a very good 
agreement for the frequency as well as for the 
growth rate. The numerical results obtained 
here appear to be much better than those 
obtained from the one-term Galerkin 
approximation given in [6]. The dependence of 
the resonant frequency on β is shown in Figure 
2. As β increases, the intensity of the heat 
release in the combustion chamber and the 
acoustic pressure increase. Consequently, there 
is a decrease of the resonant frequency in a 
measure to comply with inlet and outlet 
boundary conditions. The influence of β and τ 
on the growth rate is shown in Figure 3. 
Growth rate increases if the rate of heat input 
has a component in phase with pressure 
perturbation. The differences between the 
results obtained from the FEM analysis are so 
close to those obtained analytically that 
graphically any difference can be observed, 
confirming the success of this test.  
In the previous examples, only a theoretical 
geometry has been considered, suitable for 
benchmark tests, since the analytical solutions 
exist for such tests. In [6] Dowling and Stow 
examine a more realistic quasi-one-
dimensional geometry, composed by three 
cylindrical ducts:  diffuser, premixer and 
combustion chamber. In this case, a low Mach 
number flow was considered in [6],  while here 
the flow is neglected according with Eq.(1). It 
is assumed, following the approach adopted in 
[6], the blockage at the premixer inlet so that it 
acts approximately like a hard end (u’=0).  An 
open end is instead assumed at the combustor 
exit (p’=0).  
 



 

Figure 4 - Simplified scheme of flame location and 
boundary conditions, for benchmark tests on 
straight duct with variation of section. 

The flame sheet is supposed to be placed at the 
exit of the premixer, just at the inlet of the 
combustion chamber. The heat release 
fluctuation, given by Eq.(6), is related to the 
fluctuations of the flow velocity at the fuel 
inlet point through a time delay . The flame 
model used by Dowling and Stow in [6] was 
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where mi is the air mass flow at the fuel 
injection point (assumed to be located at the 
inlet of the premixer). k is a nondimensional 
number, used for varying the intensity of the 
unsteady heat release. The time average of heat 
release rate per unit area of the combustion 
chamber is  
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where cp is specific heat at constant pressure 

and 1T  and 2T  are the temperatures in the 

premixer and in the combustion chamber, 
respectively. From these equations, an 

expression of Q̂  can be obtained. Then the 

heat input per unit area can be written as a 

function of time  )exp(ˆ' tiQQ  . So that, by 

using Eq.(5), it is straightforward to obtain the 
expression of the coefficient β to be used to 
quantify the fluctuations of heat release in 
Eq.(8) where, coherently with the flame model 
assumed here, the velocity fluctuation at the 
premixer inlet, iû  has been considered instead 

of the fluctuation )(ˆ bu  just upstream of the 

flame. 
The grid used for this case, composed of  
11382 elements uniformly distributed, is 
represented in Figure 5: 

 

Figure 5 – Mesh visualization of the quasi-one-
dimensional combustion system 

 

Figure 6 – Resonant mode of a simple combustor. 
Crosses represent the results from the acoustic code. 
Circles represent the results from [6] 

The results obtained from the calculations of 
the eigenvalues of the system with heat release 
fluctuations with k=1 are given in Figure 6, 
where the values of growth rate values are 
plotted against the frequency values. In this 
figure such results are compared with the 
corresponding values given in [6]. It appears 
that the code is able to identify the all the 
modes and their frequencies, carefully. Also 
the growth rate is well estimated taking into 
account that calculations in [6] are carried out 
under the hypothesis of planar waves and 
taking into account the damping effects due to 
the mean flow. In many cases heat release 
fluctuations have the effect to create instability 
as the growth rate has a positive value. The 
analysis of the pressure patterns of each mode, 
show that the lowest frequency of 29 Hz 
corresponds to a resonance of the whole 
system, 105 [Hz] is the frequency of the first 
mode of the plenum, that behaves like an 
acoustic tube with a closed end at the inlet and 
an approximately closed end at the other 
boundary due to the variations of the cross 
section at the conjunction with the premixer. 
Further eigenfrequencies appear at 199, 290, 
387 and 502 Hz that are the  harmonics of the 
mode at 105 Hz. A good correspondence with 



the results shown in [6] is obtained. In fact all 
the important frequencies are valuated. The 
growth rate are not equal because mean flow is 
neglected, following a conservative analysis. 
In this way growth rate are greater in absolute 
value than those obtained in [6] and tightened 
to instability. 
 
4.   Tests on Annular Combustor 
 
The examination of an annular combustor has 
been carried out taking as reference the simple 
geometry examined by Pankiewitz and 
Sattelmayer in [7]. The combustor, shown in 
Figure 7, is characterized by a diffusion 
chamber ring (plenum) and an annular 
combustion chamber linked by 12 "swirler" 
burners. The hot gases leave the combustion 
chamber through 12 choked nozzles, which 
allow the achievement of high pressure inside 
the chamber. The conditions are set according 
to a case of an experimental combustor that 
was operated with natural gas, the air entering 
the plenum being preheated to T1 = 770K and 
the total thermal power being P = 1020kW. In 
Figure 7 the grid composed of  66519 elements 
uniformly distributed is represented. 

 

Figure 7 – Computational grid of the annular 
combustion chamber. 

For inlet and outlet boundary conditions the 
same approach used in [7] is adopted in order 
to take into account the effects of the flow 
velocity on acoustic impedance of such 
boundaries. The flow both enters and exits the 
computational domain from and to a large 
plenum, where pressure perturbations can be 
neglected. Defining the inward normal 
acceleration at the boundary as  
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where, like other fluctuating quantities, nâ  is 

obtained from the relation )exp(ˆ' tiaa nn  . 

Assuming a suitable value for the constant 
  ppuK n 2/ , Eq.(12) gives the 

expression of normal acceleration that is used 
in COMSOL to set the boundary conditions at 
inlet and outlet of the combustion system [8]. 
The value K = 0 represents the condition of 
choked or closed end;  K = ∞ represents the 
condition of open end. As in [7], the values of 
K = 0.1 at inlet and K = 0.2 at outlet, are 
assumed in the calculations.  
The eigenvalue analysis of the system has been 
carried out in order to obtain the characteristic 
modes of the system. At the beginning the 
system is considered without heat release. The 
eigenfrequencies have been normalized with 
the frequency 000 / Lu=f where u0 is equal to 

the sound speed in the plenum and the length 
L0  is equal to the mean diameter of the 
chamber.  The obtained results for the first four 
modes are given in Table 1 and compared with 
the results given in [7]. The modes are denoted 
with the nomenclature (l,m,n), where l, m and 
n are, respectively, the orders of the pure axial, 
circumferential and radial modes that appear in 
the eigenmode obtained from simulation. In a 
distribution of pressure within the whole 
combustion assembly, for the first four 
eigenmodes, is presented: pressure 
distributions appear to be very similar to those 
proposed in [7]. The first mode is a pure axial 
mode, the second one is a circumferential 
mode that involves only the plenum where the 
largest pressure oscillations can be seen. The 
third mode is a coupled axial-circumferential 
mode where the largest oscillations occur in 
the combustion chamber. The fourth mode is a 
circumferential mode of the second order that 
involves only the plenum. The main difference 
between the results obtained here and those 
given in [7] appears to be related to the value 
of the eigenvalue corresponding to the axial 
mode. This is most probably due to some 
geometrical differences in the axial length of 



some parts in respect to those used in [7] 
where not all the geometrical details are 
available. For the circumferential modes, 
further eigenfunctions can be obtained by 
rotation around the combustor axis of an angle 
of /(2m). For the sake of simplicity, only one 
eigenmode is represented for each frequency. 

Table 1 – Values of the normalized frequencies from 
the acoustic code and from [7]. 

 

 

Figure 8 – First four acoustic eigenmodes of the 
combustor. 

Then the system is analyzed considering the 
presence of heat release. To this purpose the 
approach proposed in [7] has been followed, 
adopting the flame model of Eq.(9), that relates 
the heat release fluctuations to the acoustic 
velocity at the premixer inlet, as a consequence 
of the fuel-air ratio fluctuations at the point of 
fuel input. For each sector of the flame zone, 

the heat release fluctuation Q̂  is related to the 

acoustic velocities taken upstream of the 
corresponding burner; the heat release is 
supposed to be distributed uniformly in each 
sector of the flame zone. It is worth noting that 
in [7], the flame response was related to the 
acoustic velocity at the inlet of the chamber 
(corresponding to the premixer exit) while, 
here, the flame model of Eq.(9) relates the heat 
release fluctuations to the acoustic velocity at 
the premixer inlet. The eigenvalue analysis of 
the system has been carried out by varying the 
values of  the parameter k (0.5 to 1) and of the 
time delay τ (from 0 to 0.006 s).  

 

Figure 9 – Variation with k of the normalized 
frequencies of the annular combustion chamber. 
Time delay  τ = 0. 

First of all, the variation of the value of the 
first four eigenvalues with the parameter k are 
examined, assuming τ = 0. The results given in 
Figure 9 show that the frequency of axial mode 
is strongly influenced by the variation of k: its 
non-dimensional value decreases from 0.243 
with k=0 to zero where k=1. With further 
higher values of k the axial mode disappears, 
likewise what is shown previously in Figure 2 
for the first mode of the duct with heat release 
fluctuation. The increase of k produces the 
increase of the heat release fluctuations in the 
combustion chamber, the increase of the 
acoustic pressure therein, and, consequently, 
the decrease of the eigenfrequency in order to 
meet the inlet and outlet boundary conditions. 
The increase of k has instead lower influence 
on both the frequencies of the circumferential 
modes in the plenum, while a significant 
variation of the frequency is observed for the 
circumferential mode in the combustion 
chamber. 
The second mode is the first circumferential in 
the plenum (0,1,0). In this case, the highest 
pressure amplitude occur in the plenum. Such 
pressure fluctuations are driven by the heat 
fluctuations in the chamber, notwithstanding 
that in the chamber the pressure oscillations 
are much lower. The normalized frequency and 
growth rate of this mode are shown in Figure 
10 where symbols represent the results 
obtained from simulation and splines 
connecting the symbols are used in order to 
give the pattern of the curves. An alternation of 
stability and instability conditions is observed 
with the variation of the time delay, and also 
the increase of k causes the variation the value 
of the growth rate.  
 



 
(a) 

 

 
(b) 

Figure 10 - Variation with the time delay of the 
normalized frequency (a) and of the growth rate (b) 
of the first circumferential mode of the plenum.  

 
5.   Conclusion 
 
The present approach is particularly 
appropriate to treat complex geometries that 
are difficult to be examined either with 
analytical methods or acoustic network 
methods. The FEM analysis has been 
successfully applied also to different kinds of 
heat release laws and different boundary 
conditions. Both stable and unstable 
eigenmodes have been identified over a wide 
range of frequencies for different 
configurations. Frequencies and growth rates 
are accurately captured, and results are in a 
very good agreement with results obtained 
analytically and over simple geometries. 
The proposed method appears to be a relatively 
simple tool for the analysis of combustion 
instability problems under the simplified 
hypothesis of linear acoustic waves. The 
method can be applied, e.g., to the analysis of 
the effects of passive damping devices or of 
the effects of the geometry of the system on 
the combustion stability, after knowing from 
experiments or CFD analyses, suitable flame 
response functions and the transfer function 

matrixes of the burner. 
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