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Abstract: The mesh is a key component in numerical 

simulations as it represents the spatial discretization of 

the model geometry. To accurately measure the 

variation of the unknowns, a relevant mesh should have 

a high density of degrees of freedom in regions where 

the norm of the gradient of the quantity of interest is 

significant. Fine meshes, on the other hand tend to 

induce long computational times, especially when 

complex 3D physics (fluid mechanics, 

electromagnetism …) are involved. Another sensitive 

point regarding meshes is the fact that regions with high 

gradients are likely to move during time dependent 

studies hence it can be difficult to define a fixed mesh 

that remains relevant with time. 

The Adaptive Mesh Refinement (AMR) method 

implemented in COMSOL Multiphysics® can help to 

mitigate computational time while maintaining 

precision. Instead of using a fixed mesh throughout the 

simulation, the initial mesh is adapted to the solution 

while the simulation is computed. High gradients areas 

are identified through an indicator which, in this case, 

is the norm of the gradient. The indicator is defined on 

the initial coarse mesh, the mesh update is performed 

when the indicator threshold is reached and the first 

elements to be updated are those with the highest 

indicator value. 

In this paper, the rising of a gas bubble in a liquid is 

modelled with the finite element (FE) software 

COMSOL Multiphysics® using a two-phase flow 

approach. Results from literature [1]  are compared 

with results obtained using both fixed and adaptive 

meshes. The precision of the results and computational 

time are quantified to inform the FE analyst on the gain 

from using adaptive meshing. The results from the 

AMR method available in COMSOL Multiphysics® 

are then compared with results obtained with different 

software: NaSt3D and OpenFOAM [2]. 
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Introduction:  

In order to assess the accuracy of the Adaptive Mesh 

Refinement (AMR) method implemented in COMSOL 

Multiphysics®, the classical physical phenomenon of a 

rising bubble of gas is studied. Moreover, this topic has 

been widely studied in the literature ([1] and [2]), 

enabling us to compare our numerical results obtained 

with COMSOL Multiphysics® with other software, 

like NaSt3D and OpenFOAM [2], both in time and 

accuracy. It is also suitable for the task because 

computational fluid mechanics models often present 

long computational times, especially in 3D. Moreover, 

two-phase flows simulations require a fine mesh around 

the interface for precision concerns. Therefore, the 

AMR method seems very efficiently by adapting the 

mesh, with a very fine mesh around the interface to 

achieve a high degree of precision, while having larger 

elements elsewhere to minimise the impact on 

computational time. 

A quantitative comparison is made between the results 

from the AMR method, the fixed mesh case and the 

ones from literature [1] in 2D. Then, another 

comparison is established in 3D with the results from 

other software ([2]) to assess the efficiency of 

COMSOL Multiphysics® in the domain of 

computational fluid dynamics. 

 

 

Governing equations and numerical model 

 

1. Fluid mechanics 

 

The Navier-Stokes equations describe the laminar fluid 

flow evolution. In the study, the fluid is assumed to be 

incompressible: 

{
𝜌 (

𝜕�⃗⃗� 

𝜕𝑡
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where 𝜌 and 𝜇 denotes respectively the mass density 

and dynamic viscosity of the fluid, �⃗�  represents the 

velocity field vector, 𝑝 the pressure field and 𝑔  is the 

acceleration of gravity. 

 

2. Phase-field approach 

 

To represent the behaviour of the bubble inside the 

liquid, the phase-field method is used. This method 

consists in tracking a diffuse interface separating the 

immiscible phases with a dimensionless phase field 

variable denoted 𝜙 that can take values in [-1 , 1] 

according to the phase represented. In Figure 1, a 

schematic representation of the method is presented: 

each phase is characterised by a value of 𝜙: -1 

correspond to one phase and 1 to the other, while a 

value of 0 denotes the physical interface. The two 

phases are separated by a numerical interface, where 𝜙 

varies in ]-1, 1[.  

 



 
Figure 1.Visual representation of the phase field variable 

A system of two 2nd order equations is used in 

COMSOL Multiphysics® to solve the Cahn-Hilliard 

equation, due to the presence of derivatives of 4th 

order: 

 

{

𝜕𝜙

𝜕𝑡
+ �⃗� ∙ ∇⃗⃗ 𝜙 = ∇⃗⃗ ∙

3𝜎𝜒𝜀
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∇⃗⃗ 𝜓

𝜓 = −∇⃗⃗ ∙ 𝜀2∇⃗⃗ 𝜙 + (𝜙2 − 1)𝜙
 (2) 

 

With 𝜙 the phase field variable, 𝜎 the surface tension 

coefficient, and 𝜀 the interface thickness parameter. The 

symbols 𝜒 and 𝜀 represent the two numerical 

parameters of the phase-field method. The values 

assigned to these parameters as well as the mesh size ℎ 

will be of paramount importance with regards to the 

convergence the model and the precision level of the 

results. 

 

Linear relations are used to link the physical properties 

𝜌 and 𝜇 to the phase field variable 𝜙 and the physical 

properties of the two fluids: 

 

{
𝜌 = 𝜌1 + (𝜌2 − 𝜌1)

1+𝜙

2

𝜇 = 𝜇1 + (𝜇2 − 𝜇1)
1+𝜙

2

  (3) 

where subscripts 1 and 2 refer respectively to fluid 1 

and fluid 2. 

3. Geometry and boundary conditions 

 

The 2D geometry and boundary conditions are 

presented in Figure 2, obtained from [1]. The bubble of 

fluid 2 is contained within a column of fluid 1. A no-

slip condition is set on the upper and lower boundaries 

of the domains. On the vertical walls, a tangent slip is 

allowed. As the pressure only influences the Navier-

Stokes equations through its gradient, it needs to be 

fixed at one point to ensure the uniqueness of the 

solution. 

 

 
Figure 2. Geometry (left, from [1]) and boundary 

conditions (right) of the 2D model 

 

A 3D model is built from the 2D one, extracted from 

[2]. The dimensions of the geometry are presented in 

Figure 3. The boundary conditions remain unchanged 

compared to that of the 2D model, apart from the non-

slip condition, which is prescribed on the 6 walls of the 

domain. 

 

 
Figure 3. Dimensions and geometry of the 3D model 

obtained from [2] 

 

4. Parameters of the study 

 

The values of the different parameters used in the two 

models are presented in Table 1, extracted from [1]and 

[2]. 

 

𝝆𝟏 

(𝒌𝒈/𝒎𝟑) 
𝝁𝟏 

(𝑷𝒂. 𝒔) 
𝝆𝟐 

(𝒌𝒈/𝒎𝟑) 
𝝁𝟐 

(𝑷𝒂. 𝒔) 
𝒈 

(𝒎/𝒔𝟐) 
𝝈 

(𝑵/𝒎) 

1000 10 1 0.1 0.98 1.96 

Table 1. Material properties of the fluids and parameter 

values used in the studies 

 

These numerical values have been roughly used to 

compare the results directly with the ones of [1] and [2]. 

 

The phase field parameter 𝜒 is set to 1 𝑚 ∙ 𝑠/𝑘𝑔 while  

 𝜀 is set to 
1

2
ℎ, where ℎ is the size of the finest elements 

in the case of the adaptive mesh and correspond to the 

elements size in the case of the fixed mesh. 

 

 

Fluid 1 

Fluid 2 



Simulation Results 

 

1. Comparison criteria 

 

To compare the results from the different cases, the 

following quantities are defined: 

 

 The position of the centre of mass of the 

bubble: �̅� =
1

|Ω|
∫ 𝑦 𝑑𝑋

 

Ω
 

 The mean ascending velocity: �̅� =
1

|Ω|
∫ 𝑣 𝑑𝑋

 

Ω
 

 

Where the domain of the bubble Ω is defined as  Ω =

{𝑋 ∈ ℝ𝑛 | 𝜙(𝑋) ≥ 0} and its measure is |Ω| = ∫ 1 𝑑𝑋
 

Ω
. 

 

2. Modelling approach validation 

 

To confirm the validity of the results, the fluid mass 

conservation is monitored during the study duration. In 

Figure 4, it can be seen that the mass variation is less 

than 0.03% which is considered negligible. 

 
Figure 4. Mass change (in % of the initial mass) in the 

fixed mesh model and the adaptive one 

The Navier-Stokes equations solved in the study 

assume a laminar flow. The Reynolds number Re 

should be small enough (<< 2000) to obtain the 

numerical convergence. Re is calculated via the formula 

𝑅𝑒 =
𝜌𝑈𝐿

𝜇
 (4) 

where  𝑈 and 𝐿 denote respectively a characteristic 

velocity and a characteristic length of the flow. 

 

In Figure 5, the maximum values of Re are plotted with 

time, and it can be seen the maximum Re values are 

well below the threshold defined hence the laminar 

flow approach is validated. 

 

 
Figure 5. Maximum of Reynolds number value with time 

3. Results from the 2D model 

 

The shapes of the bubble domain from the fixed and 

adaptive meshes at 𝑡 = 3 𝑠 are compared in Figure 6. It 

can be noticed that in both cases, the bubble has the 

same position, and the shapes of the bubbles show a 

satisfactory agreement which indicates a good 

coherence between the two techniques.  

 

The presence of satellite bubbles falling off the main 

bubble can be noticed in the case where a fixed mesh is 

used. This can be explained by the fact that the coarse 

fixed mesh forces a coarse diffuse interface thickness 

as the latter is related to the parameter 𝜀 which is 

proportional to the mesh elements size ℎ. In the case of 

the adaptive mesh, the refined elements are smaller than 

those of the fixed mesh hence the thin filaments can be 

represented. 

The difference in the two shapes highlight a desirable 

feature of the AMR technique; details which would be 

omitted in the case of a coarse fixed mesh, and 

alternatively, would require a fine mesh in the entire 

domain are automatically captured. 

 

 
Figure 6. Shape of the bubble at 𝑡 = 3 𝑠 with a fixed 

mesh (red) and adaptive mesh (green) 

 

a. Reduction of computational time 

 

In Table 2, the number of degrees of freedom (DOFs) 

i.e. number of unknowns solved for, and computational 

times for both mesh case studies are reported. It can be 

noticed that even though the two models have an 

equivalent number of DOFs, the AMR method reduced 

the computational time by a factor of 5. 

 

 Number of DOFs Computational 

time 

Fixed mesh 260 000 75 mins 

Adaptive 

mesh 

250 000 15 mins 

Table 2. Computational times of fixed mesh vs. adaptive 

mesh 

 

 

 

 



b. Preservation of precision 

 

The comparison criteria defined in section “Simulation 

Results-1” are used to compare the results from the 

benchmark [1] with the results from the 2D model using 

a fixed mesh and an adaptive mesh. The bubble centre 

of mass evolution with time is presented in Figure 7. It 

can be seen that the results from the three study 

correlate well. In Figure 8, the difference in the results 

is quantified through the position difference (in %) with 

the benchmark. The position difference is less than 

0.8% for both meshes. 

 

As mentioned in section “Results from the 2D model”, 

the topography variation between the two studies is 

likely to be due to the difference in the diffuse interface 

thickness. Overall, the shape comparison is 

satisfactory, which confirms the AMR method does not 

distort the shape of the solution. 

 

 
Figure 7. Position of the centre of the bubble evolution 

with time from the benchmark (blue), the fixed mesh 

(red) and adaptive mesh (green) FE model predictions 

 
Figure 8. Difference of position of the bubble centre in 

% relative to the results from the benchmark and the 

fixed mesh case (blue) and the adaptive one (green) 

 

In Figure 9, the mean rise velocity of the bubble is 

plotted for the three cases and it can be seen the three 

approaches predictions are in good agreement. For a 

more quantitative comparison, the difference in % 

relative to the results from the benchmark are shown in 

Figure 10. The difference between the results from the 

benchmark and those from the adaptive mesh is less 

than 4.5%. In the fixed mesh case, the relative error 

with the benchmark case results rises up to 7.5% at 

t=2s. This coincides with the separation of the satellite 

bubbles from the main one.  

 

 
Figure 9. Mean rise velocity evolution with time from 

the benchmark (blue), the fixed mesh (red) and adaptive 

mesh (green) FE model predictions 

 
Figure 10. Difference of mean rise velocity in % relative 

to the results from the benchmark and the fixed mesh 

case (blue) and the adaptive one (green) 

In this section, the 2D modelling of a rising bubble was 

presented using two meshing approaches. Results from 

a benchmark [1], a model using a fixed mesh and a 

model using an adaptive mesh were compared. It was 

found that the AMR method enabled reducing the 

computational time by a factor of 5 (compared with the 

fixed model) while improving the accuracy of the 

bubble shape. 

 

 

4. 3D results 

 

The AMR method proved to be effective in reducing 

the computational time on a 2D model. As the 

computational time of 3D models can be consequent, it 

would be attractive to use the AMR method on 3D 

models. However, the way the elements are refined 

changes when transitioning from 2D to 3D: in 2D, an 

element is refined in a regular pattern by creating 

smaller elements, homothetic relatively to the parent 

one. In 3D, an element is refined by splitting it in two 

along its longest edge. The AMR technique is applied 

on 3D models and the efficiency of the technique is 

assessed for both 2D and 3D cases. 

 

The studied system being closed, the fluid mass 

conservation must be verified. The mass evolution of is 

plotted in Figure 11 and a variation lower than 0.15 % 

can be noticed, which is considered acceptable with 

regards to mass conservation. 

 



 
Figure 11. Mass change (in % of the initial mass) 

As it was performed for the 2D case, the hypothesis of 

a laminar flow is checked by deriving the value of the 

Reynolds number along the study, as presented in 

Figure 12. The 𝑅𝑒 maximum value is indeed below the 

turbulent threshold (<2000) which confirms the laminar 

flow approach. 

 

 
Figure 12. Maximum of Reynolds number value 

evolution with time 

 

a. Gain in computational time 

 

Two different computational fluid dynamic software 

are used in the [2]: NaSt3D which uses the finite 

difference method to solve the problem, and 

OpenFOAM which uses the finite volume approach. 

The computational times of the model using an adaptive 

mesh and the two models of the article [2] are presented 

in Table 3. Unlike the 2D case comparison, here it is 

not possible to quantify the gain in computational time 

from the AMR method in a quantitative way. This is 

due to the fact that the number of CPU and frequency 

do not allow a relevant comparison. However, with 

regards to the results, a notable gain in computational 

time is noticed. 

 

Computational times 

COMSOL 

Multiphysics® 

with AMR 

method 

22h on 2 CPU at 4.1 GHz 

NaSt3D 1 week on 32 CPU at 2.226 GHz 

OpenFOAM 60h on 32 CPU at 2.226 GHz 

Table 3. Comparison in computational time with results 

from [2] 

 

b. Preservation of precision 

 

A comparison is made between the adaptive mesh 

method model and the two cases of the benchmark. The 

position of the centre of mass of the three models is 

shown in Figure 13. Excellent agreements are found, 

with a relative difference less than 1.1% between the 

results from the two software programs and those of the 

adaptive mesh case, as seen in Figure 14. This indicates 

the AMR method may enable saving computational 

time without leading to a drop-in accuracy. 

 

 
Figure 13. Position of the centre of the bubble evolution 

with time from the adaptive mesh (blue), NaSt3D (green) 

and OpenFOAM (red) FE model predictions 

 
Figure 14. Difference of position of the bubble centre in 

% relative to the results from the adaptive mesh case and 

results from NaSt3D (blue) and OpenFOAM (green) 

The mean rise velocity evolution with time is presented 

in Figure 15 for the three models.  On the graph, it can 

be seen that the results match well. The difference 

relative to the results from the adaptive mesh case with 

NaSt3D and OpenFOAM is plotted in Figure 16. The 

maximum difference between the results is below 3% 

for NaSt3D less than 2% for OpenFOAM, which is 

considered negligible. This indicates once more the 

results from the model using the AMR method do not 

lose any accuracy compared to the model using a fixed 

mesh. 



 
Figure 15. Mean rise velocity evolution with time from 

the adaptive mesh (blue), NaSt3D (green) and 

OpenFOAM (red) FE model predictions 

 
Figure 16. Difference of mean rise velocity in % relative 

to the results from the adaptive mesh case and results 

from NaSt3D (blue) and OpenFOAM (green) 

The results from this study validate the AMR method 

in 3D, since the computational time is reduced in a 

consequent way while an equivalent precision is 

preserved. 

 

Conclusions  

 

2D and 3D validation studies consisting in a 

comparison between the results from a model using the 

AMR method, a model using a fixed mesh and results 

from literature. Satisfactory agreements were found, 

and it was highlighted that the AMR method provides a 

consequent reduction in computational time while 

preserving the numerical precision. 

 

Even if comparisons between different methods are 

tough to establish, the 3D case underlined the fact that 

results from COMSOL Multiphysics® are equivalent in 

pertinence to those of others software, while having a 

much lower computational time. COMSOL 

Multiphysics® is then more than well suited for 

computational fluid dynamics models. 

 

The efficiency of the AMR method is demonstrated 

here on the rise of a bubble to keep the physics involved 

simple enough. However, as the technique is 

particularly well suited for modelling problems 

involving high gradients in the field of interest, moving 

meshes and deformed geometry, it can be used on 

complex industrial cases such as numerical simulations 

of welding or additive manufacturing. 
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