Tunable Flat-Plate Absorber Design for Active Sound Absorption

K. Bjornsson, R. Boulandet, H. Lissek Signal Processing Laboratory LTS2, EPFL

Introduction

- Low frequency noise is an issue in many indoor environments
 - Room resonances
 - Long modal decay times
- There is a need for ways to damp these low frequency modes effectively
- Passive absorbers have limited bandwidth of effective absorption
- Active absorbers (typically in the form of loudspeakers) are tunable and have a wider bandwidth

Objectives

- Design a compact and cost-effective low frequency absorber driven by an inertial actuator
- Effective sound absorption ($\alpha > 0.83$) from 50 to 200 Hz
- Tunable system

Active impedance control

- Absorber is placed at one end of a waveguide
- Absorption coefficient for incident plane waves:

$$\alpha = 1 - \left| \frac{Z_s - \rho c}{Z_s + \rho c} \right|^2$$

• Perfect absorption is achieved when:

$$Z_s = \frac{\hat{p}_L}{\hat{v}_L} = \rho c$$

- With control we can modify the specific acoustic impedance of the system
- In practice, it is impossible to reach *pc*, i.e. we cannot completely cancel the effects of the reactive mass and compliance of the system

Active impedance control

• We introduce a target in the form of:

$$Z_{st} = \rho c + j \left(\mu_1 \frac{\omega m_{tot}}{S_d} - \mu_2 \frac{1}{S_d \omega C_{tot}} \right)$$

- μ_1 and μ_2 are positive real coefficients that decrease (or increase) the effective mass/stiffness
- Using different μ_1 and μ_2 it is possible to shift the resonance frequency from the resonance of the passive system
- Feedback control is used to achieve the target
- Newton's second law of motion for the moving piston gives the control force:

$$Z_m \hat{v}_L = \hat{p}_L S_d - Bl\hat{\imath} \quad \Rightarrow \quad Bl\hat{\imath} = \hat{p}_L \left(S_d - \frac{Z_m}{Z_s} \right)$$

Active impedance control

• We introduce a target in the form of:

$$Z_{st} = \rho c + j \left(\mu_1 \frac{\omega m_{tot}}{S_d} - \mu_2 \frac{1}{S_d \omega C_{tot}} \right)$$

- μ_1 and μ_2 are positive real coefficients that decrease (or increase) the effective mass/stiffness
- Using different μ_1 and μ_2 it is possible to shift the resonance frequency from the resonance of the passive system
- Feedback control is used to achieve the target
- Newton's second law of motion for the moving piston gives the control force:

$$Z_m \hat{v}_L = \hat{p}_L S_d - Bl\hat{\imath} \quad \Rightarrow \quad Bl\hat{\imath} = \hat{p}_m \left(S_d - \frac{Z_m}{Z_{st}} \right)$$

Measure pressure near piston

Impose target impedance

COMSOL Conference 2018 Lausanne

Use of COMSOL Multiphysics

- The control law assumes the plate is perfectly rigid
- Effects of bending modes investigated in COMSOL
- Two acoustical domains coupled with a structural domain (shell)
- We consider a cross-plied balsa plate and model it as a two layer shell with orthotropic material properties

COMSOL Conference 2018 Lausanne

Implementation of the control

- Pressure is measured in the proximity of the plate and defined as a variable
- Control force is calculate via the control law: $Bl\hat{i} = \hat{p}_m(S_d Z_m/Z_{st})$
- The mechanical parameters $(m_{tot}, R_{tot}, C_{tot})$ are curve fitted from the response of the passive system allowing for calculation of Z_m and Z_{st}
- Pressure and velocity are averaged over the plate area allowing for calculation of its specific acoustic impedance and absorption coefficient

Eigenfrequency analysis

- Piston mode at approx. 98 Hz
- Rocking modes of the surround suspension at low frequencies
 - Expected as no countermeasures for rocking motion are applied
- First bending mode of the plate at approx. 312 Hz
- Strong acoustic-structure coupling
 - Bending modes occur at lower frequencies than for the uncoupled system

Simulated absorption coefficient

- COMSOL model consistent with the lumped model
- Significant deviation from the lumped near the first bending mode
- Rocking modes are not excited due to symmetry of geometry and boundary conditions

Assessment of a prototype

- A prototype has been built and tested to validate the concept
- Made of different material which renders it somewhat incomparable with the numerical model
- Overall, good agreement with prediction from the lumped model
- Largest deviations are likely due to rocking modes

Conclusion

- A compact and tunable electroacoustic absorber driven by an inertial actuator has been designed
- The system could be further improved by countermeasures for rocking motion
- The modeling of the system could be improved by including nonsymmetries in the geometry and boundary conditions

Thank you for your attention

References

Rivet E, Karkar S, Lissek H. Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control. IEEE Transactions on Control Systems Technology. 2017 Jan;25(1):63-72.