

ENGINEERING

Prediction of Thermoacoustic Instabilities in Combustion Systems - Application to a Simplified Model of a Domestic Boiler

D. Tonon, Lausanne, 23/10/2018

Company Profile

- ▶ **T4G Engineering GmbH** has been founded in 2017 in Luzern, Switzerland
- ▶ T4G Engineering provides reliable and cost-effective solutions and services in:
 - Clean, Smart and Sustainable Energy and Power
 - Advanced Combustion Systems and Combustion Dynamics
 - Aeroacoustics
 - Technical Acoustics
 - Development of simulation and calculation software and tools
 - Training
- In particular, the team of T4G Engineering has cuttingedge skills and experience in Aeroacoustic and Themoacoustic Coupling in Energy Processes
- ▶ T4G Engineering helps you solving your challenges

Combustion Systems Development

Low pollutants emissions can be achieved with **lean-premixed combustion**, but there are **intrinsic problems** with a lean combustion zone

- Difficulties in igniting the flame
- ▶ High promptness to **unstable combustion** (i.e. combustion dynamics) process leading to high amplitude pressure oscillations (i.e. acoustic pulsations)
- Combustion dynamics is due to aero-acoustic and thermo-acoustic coupling processes
 - Aero-acoustic coupling between flow instabilities and acoustic pressure waves in the combustion system
 - ▶ Thermo-acoustic coupling between **heat release fluctuations** and acoustic pressure waves in the combustion system

Effect of combustor acoustic pulsations

Pressure oscillations → Structural vibrations → Pulsation Induced Damages

Combustion Systems Development

Solution to the problem of Combustion Dynamics

- Approach:
 - Develop prediction tools of combustion dynamics to aid the design of combustion systems
 - Use of numerical and experimental tools to find concepts to avoid high dynamics
 - Monitor the combustion behavior to precisely characterize the combustion dynamics of a combustion system
- Solution:
 - Design optimization: fuel streams/stages design, fuel line design, aeroacoustic design, thermoacoustic design
 - Passive acoustic damping solutions as integral part of the combustion system
 - Active control of pulsations/vibrations

Solution to the problem

Combustion Dynamics Modelling; Design optimization; Passive damping solutions; Active control of pulsations

Domestic Boiler Example

Domestic Boiler Example

Acoustic Network Model

- Network elements connected by ports
- Acoustic compactness of flame and heat exchanger
 - Flame thickens much smaller than wavelength ($\delta_{flame} \ll \lambda$)
 - Heat exchanger tubes diameter much smaller than wavelength ($D_{hex} \ll \lambda$)
- Plane waves at the network ports
- Acoustic wave propagation in network elements:
 - Analytical models: Perforated Plate, Flame and Heat Exchanger
 - FEM model (COMSOL): Fuel-Air Mixing Plenum, Combustion Chamber, Exhaust

$$\frac{\hat{p}_1}{\rho_1 c_1}$$
 $\frac{\hat{p}_2}{\rho_2 c_2}$
 \hat{u}_1
 $\frac{\hat{p}_2}{\rho_2 c_2}$

Transfer Matrix

$$\begin{bmatrix} \frac{p'}{\rho c} \\ u' \end{bmatrix}_2 = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} \frac{p'}{\rho c} \\ u' \end{bmatrix}_1$$

Analytical and/or FEM

FEM Calculated Network Element Transfer Matrix

- Numerical evaluation of acoustic transfer matrix of network elements with COMSOL Multiphysics
 - Pressure Acoustics, Frequency Domain (acpr) physics interface with Frequency Domain study
 - Pressure Acoustics, Frequency Domain (acpr) physics interface with Eigenfrequency study
- Workflow to evaluate network elements transfer matrices with COMSOL Multiphysics:
 - Import geometry (CAD Import Module) in COMSOL Multiphysics
 - Divide the geometry in domains (partition objects) and save each domain (.stl binary)
 - Calculate the eigenfrequencies for each domain
 - Export mode shape at domain boundaries (corresponding to network ports) for each eigenfrequency; normalization factor of the modes; speed of sound and density in the domain
 - Take into account only modes with plane waves at the network ports
- Import COMSOL simulation results in T4G's Acoustic Network Model

Selection of modes with plane waves at the network ports

- Only modes corresponding to plane waves at the network ports should be taken into account
 - Manual selection by visual inspection
 - Automated selection in COMSOL by means of *Volume Integration*, *Volume Average*, *Surface Average*, *Surface Minimum* and *Surface Maximum* of acoustic pressure

T4G's Acoustic Network Model

T4G's Acoustic Network Model

T4G's Acoustic Network Model

₽×

Im(w)

Im(Ψ)

Im(Ψ)

The content of this document is the property of T4G Engineering GmbH. Any unauthorized use or disclosure to third parties is prohibited.

Validation Case with no acoustic sources or losses

Validation Case with no acoustic sources or losses

- Comparison of Network Model and COMSOL simulation of the full domain without acoustic sources or losses
 - Pressure Acoustics, Frequency Domain (acpr) physics interface with Eigenfrequency study
 - Validation (i.e. cross-check) of the network model results

Analysis of Thermoacoustic Stability of a Simplified Model of a Domestic Boiler

Thank you for listening

