COMSOL Multiphysics[®] Models as the Design Guidance in the Selected

Transport Phenomena Problems

S. Y. Spotar

Department of Chemical and Materials Engineering, Nazarbayev University, Astana, Kazakhstan

INTRODUCTION:

Transport phenomena models in review:

- 1. Design of the pilot convective air dryer for the apple ring, Figure 1;
- 2. Development of the inlet ventilation unit for the focusing of the extraction air flow, Figure 2;
- 3. Radon diffusion in the dwellings, Figure 3.

RESULTS:

	Radon concentration, Bq·m ⁻³				
Location	CFD, [2]	Active	Passive	CFD laminar flow	CFD turbulent
		measurement [2]	measurement [2]	(this paper)	flow, <i>k</i> -ε model (this paper)
Comer 1	20	27	30	30.8	33.0
Comer 2	21	24	30	33.2	34.2
Comer 3	27	27	30	36.4	32.5
Comer 4	13	18	8	16.3	21
Center	23	22	42	21.5	26.8

Table 1. Comparison of simulation results with study [2]

Figure 1. Vortex dryer prototype geometry

Figure 5. Flow in the vortex dryer

Figure 6. Water vapour concentration

Figure 2. The unit for the focusing of the extraction flow [1]

Figure 4. Exhalation of radon from the walls [2]

COMPUTATIONAL METHODS:

Physics: 'Turbulent Flow' or 'Laminar Flow' and 'Transport of Diluted Species', Turbulence model: k-ε; Typical mesh: 'Fine'; Study: 'Stationary', relative tolerance: 0.001. The algorithm implies a numerical solution for the coupled RANS and convective diffusion equations [3]. The radon radioactive decay process was presented by a pseudo-reaction term. Whether it was possible the workability of the model were tested with available experimental data, Figure 4.

Figure 8. Generated near-field flow

Figure 9. Radon concentration in at 0.17 and 0.51 1/h air exchange rate

CONCLUSIONS: Modeling via COMSOL[®] makes possible: 1.Design of the vortex dryer with uniform distribution of convective mass transfer parameters; 2. Design the ventilation unit with a double a capture distance;

3. Show the way for 'smoothening' the impact of radon diffusion in dwellings. **ACKNOWLEDGMENTS:**

This research was supported by SRGS at NU (090118FD5323) and ORAU (129-2017/022-2017)

REFERENCES:

- S.Y. Spotar and A.L Sorokin, Focusing of the Flow Capture for Local Exhaust Ventilation System, American Journal of Applied Sciences, 7(6), 732-738, (2010). 2. Chauhan N., Chauhan R.P., Joshi M., Agarwal T.K., Aggarwal P., Sahoo B.K. Study of indoor radon distribution using measurements and CFD modeling. Journal of
 - Environmental Radioactivity 136,105-111, (2014).
- CFD Module User's Guidance, COMSOL Multiphysics ® v.5.3, 44-174, 417-3. 447,(2017).

Excerpt from the Proceedings of the 2018 COMSOL Conference in Lausanne