

Presented at the COMSOL Conference 2010 Boston

國立陽明

大學

Dynamic deformation of a soft particle in dual-trap optical tweezers

Sebastien Rancourt-Grenier*, Steven Wei, Jar-Jin Bai, Arthur Chiou, Paul Bareil*, Pierre-Luc Duval* and Yunlong Sheng*

Center for Optics Photonics and Lasers, Université Laval Inst. Biophotonics Eng. Nat Yang-Ming University

Cell elasticity measurement

 Suspended cells: (Micro-Rheology)

 Spherical RBC (swollen)
 Biconcave RBC

Adhered cells (Tensegrity)

Optical trap

Free RBC squeezed through hole

Red blood cells in the spleen

Scanning electron microphotograph of normal murine red blood cell passing from a splenic cord (below) through the sinusoidal barrier and into the splenic sinusoid (above). Note the deformation necessary to squeeze through the slit in the sinusoidal wall and how a surface area depleted spherocyte would be incapable of transversing the barrier. *Courtesy of Mohandas Narla, ScD*.

Guck, Biophys. J. 2001

Optical fiber dual counterpropagating beam stretcher

150

146mw

200

174mw

230mw

6,50

6,00

19mw

Deformation < 5-10% Power (mW)

43mw

66mw

92mw

118mw

Bareil, et al Opt. Express 14, 12503 (2006).

Outline

- Dual-trap tweezers experiments
- 3D stress distributions
 - Geometric Optics, Matlab
 - Generalized Mie Scattering theory
 - Comsol RF module, FDTD,
- 3D static deformation, Deformation 5-10%
 - analytical solution,
 - Comsol structural mechanics
- 3D Dynamic deformation
 - Comsol Multiphysics
- Fitting

Deformation 20 %

X

Two laser beams with a controlled separation between their optical axes (a) Normal RBC; (b) RBC immersed in solution de 1mM de N-ethylmaleimide (NEM) solution for 30 minutes

(a)

(b)

3D stress distribution Single beam centered

T-Matrix, Point Matching Method

Ray Tracing

NA=0.16 Dual Beams D=20um

FDTD

3D stress, Dual-beam tweezers

Fig. 4. 3D distribution of radiation stress on a spherical surface, as a function of the separation D between two trapping beams in the dual-beam optical tweezers. The maximum stress is 0.8 N/m^2

Geometrical approach

88

Multi-Physics Solutions

3D field distribution

- Geometric optics ray tracing
- FDTD
- Generalized Mie-scattering
- T-Matrix
- Comsol RF module

- Approximate
- Modeling high NA
 Gaussian beam
- More accurate
- Modeling high NA beam

Static deformation of membrane

Compute to membrane internal stress for a spherical RBC

$$\frac{\partial N_{\theta}}{\partial \theta} + \sin(\varphi) \frac{\partial N}{\partial \varphi} + 2N \cos(\varphi) + R \sin(\varphi) \sigma_{\theta} = 0$$
$$\frac{\partial N}{\partial \theta} + \sin(\varphi) \frac{\partial N_{\varphi}}{\partial \varphi} + (N_{\varphi} - N_{\theta}) \cos(\varphi) + R \sin(\varphi) \sigma_{\varphi} = 0$$
$$N_{\theta} + N_{\varphi} + R \sigma_{R} = 0$$

Compute the strain from the stress by Hook's law

$$N_{\varphi} = \frac{Eh}{1 - \upsilon^{2}} (\varepsilon_{\varphi} + \upsilon \varepsilon_{\theta}) \qquad \qquad N_{\theta} = \frac{Eh}{1 - \upsilon^{2}} (\varepsilon_{\theta} + \upsilon \varepsilon_{\varphi}) \qquad \qquad N = \frac{Ehw}{2(1 + \upsilon)}$$

-w)

Compute the displacements of the membrane from the strains

$$\varepsilon_{\theta} = \frac{1}{R\sin(\varphi)} \frac{\partial u}{\partial \theta} + \frac{1}{R} (v \cot(\varphi) - w) \qquad \varepsilon_{\varphi} = \frac{1}{R} (\frac{\partial v}{\partial \varphi})$$
$$w = \frac{1}{R\sin(\varphi)} \frac{\partial v}{\partial \theta} + \frac{1}{R} \frac{\partial u}{\partial \varphi} - \frac{u \cot(\varphi)}{R}$$

Static deformation analytical solution

Multi-Physics Solutions

Static deformation of cell

 Analytical solution

 Comsol Structural Mechanics module

- Only for Spherical cells
- Validation of numerical calculation
- Deformed non-spherical cells

Stress redistribution as RBC is gradually deformed

ComsolTM Structured Mechanics + Embadded Geometrical optics Matlab code

Computing stress and deformation for any shape of the cell membrane

- FE Comsol Multiphysics[™]
 - RF module;
 - Structural Mechanics module
- Embedded Matlab codes of geometrical optics
- Deformable mesh
- Linear Solver of a huge system of linear equations by iterations
- Minimize the errors

$$f'(U_0) E = -f(U_1)$$
$$C = \left(\frac{1}{N} \sum_{i=1}^{N} (|E_i| / W_i)^2\right)^{1/2}$$

N = numbre of degree of feedom W = mean deformations

Comsol MultiphysicsTM

- 3D Dynamic deformation:
- Iterating
 - Stress redistribution on deformed cell
 - Deformation of the deformed cell
- Computing
 - RF module;
 - Structural Mechanics module
 - Embedded Matlab code of ray tracing

3D deformation of spherical RBC as the stress re-distribution on the deformed cell is considered

Equilibrium deformation

Rancourt, Opt. Exp. 10462-72 (2010)

Theory fits to experimental data

T= 24°C (avec NEM)

T= 37°C (avec NEM)

T= 42°C (avec NEM)

Conclusion

- 1) Computed 3D radiation stress distribution by GO, FDTD and T-matrix on a sphere in dual-trip tweezers
- 2) Compute static 3D deformation of the spherical membrane with asymmetrical external load
- 3) Computed the stress redistribution and membrane redeformation with finite element method
- 4) Theory is fit to experimental results for membrane's deformation > 20 %

5) Differentiate normal and NEM treated RBCs, by their elasticity

 $Gh = (5,07\pm1,11) \mu N / m$

(Normal RBC)

 $Gh = (8, 59 \pm 1, 14) \mu N / m$

(NEM treated)

Future Work

- Biconcave shape of RBC
 - Comsol CAD module
- High NA Gaussian beam as background field
- Trapped particle floats
- Nanoparticle Scattering
 - RF module solver of EM field
- Other deformable particles
- Other type of tweezers
- Cell mechanics

