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Abstract: In this paper we introduce a elastic 
and hyperelastic model to describe the pressure 
dependent material stress in joint cartilage. We 
used the pressure dependent E-modulus 
E = f(s) to calculate the material stress. E = f(s) 
is a degree 4 polynomial [1]. The indentor was 
pressed 0.4 mm into the tissue. The results 
show that the maximal stress at the contact 
zone between indentor and cartilage account 
for the elastic model is 1.8 MPa and for the 
hyperelastic model is 0.9 MPa. Also the stress 
distribution (sectional view) at the indentor, 
cartilage and bone at the loaded state for both 
models were calculated. For both models the 
stress decreases from the contact zone to the 
tide mark. The models can predict the 
deformation of tissue caused by short-term 
mechanical load as well as the resulting stress 
distribution within the tissue. 
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1. Introduction 

 
The evaluation of joint cartilage occurs by 

palpation of the cartilage surface area with a 
surgery tasthaken. In the process the stiffness 
give information about the health state of the 
joint cartilage. In this case the pressure 
dependent material stress σ in joint cartilage is 
simulated by means of an elastic and 
hyperelastic material model. For the 
calculation of the material stress a pressure 
dependent modulus of elasticity E = f(s) were 
used. The calculation of the E = f(s) were 
carried out by the comparison and the iterative 
approximation between the experimental and 
simulated force-way-function by a degree 4 
polynomial. 
 
2. Experimental Methods 

 
In the experiment, the force-way-diagram 

was dictated by the pressure of the cartilage 
tissue by means of an indentor. The geometry 
and dimensions of the indentor are similar to a 
1mm diameter surgery tasthaken. The 

experiment was carried out on knee joints of 
pigs (deceased, age: 0.5 years, female). 10 
force-way-diagrams were carried out at the 
femur condyle medial to obtain the averaged 
force-way-diagram for the comparison with the 
simulation. The measurements of the cartilage 
thickness resulted in 1.3 mm. 
On the linear stage (acceleration 4 mm/s², 
speed 3 mm/s) the indentor was pressed 
0.4 mm into the tissue. The resulting pressure 
force was recorded on a force sensor. Figure 1 
shows the experimental measuring system to 
study the biomechanical behaviour of 
cartilage. 
 

 
 
Figure 1. Experimental measuring system to study 
the biomechanical behaviour of cartilage. 
 
3. Simulation Methods  
 

The preparation of the models is carried 
out according to the plane stress analysis type. 
The modelling is compiled into an elastic and 
hyperelastic material model. The model was 
configured in concordance with the experiment 



so that the indentor was placed on the cartilage 
containing a bone layer. Then the indentor was 
adjusted along the Y-axis. This adjustment in 
Y-direction was ceased in the subdomain 
constrain settings. 
The occurrent stress σ and the deformation of 
cartilage and bone layer were calculated as a 
function of the way s of the indentor along the 
Y-axis. For the construction of the model the 
indentor as well as the cartilage and bone layer 
were modelled schematically in the 2D draw 
mode (figure 2). The lower boundary of the 
bone layer was chosen fixed in the boundary 
constraint settings. 
 

 
 
Figure 2. Model geometry and material properties. 
 
3.1 Equations of the elastic model 

 
A linear elastic material model [2] was chosen 
for the indentor and the bone layer and is 
described by the following equations: 
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with 
 S – Second Piola-Kirchhoff stress 
   u - Displacement gradient 
 F – Deformation gradient 
 v – Left stretch tensor 
 σ – Cauchy stress 
 ε – Green strain 
 ε0 – Initial strain 
 I – Identity tensor 
 T – Present Temperature 
 Tref – Stress free reference Temperature 
 α – Thermal expansions vector 

Also a linear elastic material model was 
chosen for the cartilage layer and is described 
by the following equations: 
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3.2 Equations of the hyperelastic model 

 
A linear elastic material model was chosen for 
the indentor and the bone layer and the 
equations are described above. For the 
cartilage layer a hyperelastic material model 
(Neo-Hookean) [2] was chosen and is 
described by the following equations: 
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with 
 Ws – Strain energy function 
 μ, λ – Lame elastic constants 
 Jel – Elastic deformation gradient 
 I1 – Scalar invariant of C (the right  
        Cauchy-Green deformation tensor) 
 
3.3 Material properties 

 

For both models, the material properties are 
assigned as follows: Poisson ratio ٧, E-
modulus and the thickness d of the cartilage 
layer (٧ = 0.49, E = f(s), dC = 1.3 mm) with 
the neighboring bone layer (٧ = 0.3, 
E = 20 GPa [3], dB = 2 mm) as well as for the 
indentor (٧ = 0.3, E = 210 GPa).  
 
3.4 Mesh properties and element quality  

 
Due to the great differences between the  
E-modulus of the indentor (master) and the 
cartilage (slave) a contact pair was created. 
Based on this contact condition, the cartilage 
boundaries were meshed two times finer than 



the indentor boundaries [2]. Figure 3 shows the 
mesh. There are 2117 mesh points, 3922 
triangular, 354 boundary and 11 vertex 
elements. In figure 4 the element quality of the 
mesh is shown. The minimum element quality 
is 0.85.  

 

 
 
Figure 3. Mesh initialization for Indentor (master), 
cartilage (slave) and bone.  
 

 
 
Figure 4. Mesh element quality for Indentor 
(master), cartilage (slave) and bone. 
 
3.5 Model solving 

 
The model was solved by a parametric solver. 
It was used the linear system solver Direct 
UMFPACK. The parametric properties initial 
step size of 0.005, minimum step size of 0.05 
and maximum step size of 0.2 were chosen. 
The calculations of the pressure dependent 
modulus of elasticity were carried out by the 
comparison and the iterative approach between 
the experimental and simulated force-way-
function by a degree 4 polynomial.  
The iterative approach was carried out with 
MATLAB® 2010b and the simulation with 
COMSOL® Multiphysics 3.5a.  
 
 

4. Results 

 
In figure 5 and 6 the stress distribution is 

depicted for the elastic and hyperelastic 
material model at a way s = 0.4 mm, a 
calculated E = f(s) [1] and a Poisson ratio 
٧ = 0.49. The maximal stress at the contact 
zone between indentor and cartilage account 
for the elastic model 1.8 MPa and for the 
hyperelastic model 0.9 MPa. 
 

 
 
Figure 5. Stress distribution elastic model. 
 

 
 
Figure 6. Stress distribution hyperelastic model. 
 
Figure 7 and figure 8 show the stress 
distribution (sectional view) at the indentor 
(A), cartilage (B) and bone (C) at the loaded 
state for the elastic and hyperelastic model. In 
both models the stress at the indentor is nearly 
zero. For the elastic model the stress decrease 
from the contact zone to the tide mark to 
0.46 MPa and increase at the tide mark to 
0.55 MPa. For the hyperelastic model the 
stress also decrease from the contact zone to 
the tide mark. At the tide mark the stress 
increase from 0.39 MPa to 0.61 MPa. 
 
 



 
 
Figure 7. Stress distribution elastic model 
(sectional view). 
 

 
 
Figure 8. Stress distribution hyperelastic model 
(sectional view). 
 
5. Conclusions 

 
The introduced simple models allow to 

simulate the stress distribution in joint 
cartilage for selected load situations caused by 
a surgery tasthaken pressed into cartilage 
tissue. The stress distribution can be 
qualitatively and quantitatively analyzed for a 
tissue compression from 0 – 0.4 mm. Through 
the change of the model geometry the stress of 
the tissue dependency on the pressure force or 
the layer composition of the tissue can be 
examined. 
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