COMSOL CONFERENCE 2011 Multiphysics Modeling and Simulation

Design and Characterization of a Novel High-g Accelerometer

S. Heß, R. Külls, S. Nau Fraunhofer Ernst-Mach-Institut

Stuttgart, October 27th 2011

OUTLINE

- Introduction: Novel High-g Accelerometer
 - Accelerometer design and functional principle
- Extension of COMSOL material model
- Wafer-level characterization
 - Electro-mechanical characterization
 - Thermal characterization
- Summery and outlook

EMI Accelerometer

Design and Functional Principle

Main components:

- Flexural plate (spring-mass system)
- Self-supporting piezoresistive (PR) elements
- Rigid frame
- Functional principle:
 - Inertial forces cause deflection of plate
 - Straining of piezoresistive elements
 - Change in resistance is measurement signal

single crystal silicon MEMS

Use of COMSOL for Accelerometer Development

Use of COMSOL for Accelerometer Development

Extension of the COMSOL Material Model For Single Crystal Silicon

Material: single crystal silicon

- Implemented properties in COMSOL:
 - Anisotropy
 - Basic mechanical-, electrical-, thermal-behaviors
 - Coupling of the physical domains (e.g. thermal expansion)
- Needed description of:
 - Temperature dependence of thermal expansion
 - Temperature depended PR-effect
 - Doping dependence of the PR-effect

implemented in this work

Wafer-Level Characterization

- Wafer-level Characterization of the PR-elements on
 - Static straining of the elements
 - ... and heating of the elements
- Advantages:
 - Easy handling of many sensors
 - Large number of measurements in a short time

Electro-Mechanical Characterization

Generation of Linearly Rising Stress

Characterization of PR-elements on wafer-level

- Idea:
 - Generate mech. stress by bending
 - Stress in bent wafer rises linearly with bending curvature

Electro-Mechanical Characterization

Generation of Linearly Rising Stress

- Design of bending mold based on COMSOL simulation
- Setup only possible with wafer-level characterization
- Simple measurement with prober

Electro-Mechanical Characterization On-Chip Characterization of the PR-Elements

Analytic calculation:

$$\frac{\Delta R}{R} \approx \sigma_l \cdot \pi_l$$

(neglecting transverse tensions)

 $σ_l$: mech. stress → from COMSOL $π_l$: PR-coefficient → from literature

- Resistance change as expected
- Slight deviation from the theoretical value

Electro-Mechanical Characterization

On-Chip Characterization of the PR-Elements

Thermal Characterization

Influence of Thermal Effects on the PR-Effect

- Examination of thermal influences on the PR-elements
- Use of the expanded material model for single crystal silicon
 - Thermal expansion
 - Temperature dependence of resistivity and PR-coefficients

$$\begin{pmatrix} \Delta \rho_{xx} \\ \Delta \rho_{yy} \\ \Delta \rho_{zz} \\ \Delta \rho_{yz} \\ \Delta \rho_{xz} \\ \Delta \rho_{xz} \\ \Delta \rho_{xy} \end{pmatrix} = \rho_0 \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{12} & 0 & 0 & 0 \\ \pi_{12} & \pi_{11} & \pi_{12} & 0 & 0 & 0 \\ \pi_{12} & \pi_{12} & \pi_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & \pi_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & \pi_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \pi_{44} \end{pmatrix} \cdot \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{pmatrix}$$

Thermal Characterization

Simulation of Thermal Effects

- Numerical simulation of thermal effects
 - Resistivity
 - Piezoresistive coefficient
- → Significant influence on sensor sensitivity expected
- Simulation confirmed by measurements
- Strange behavior of smallest elements

Summery and Outlook

- Extension of the COMSOL silicon material model with temperature and doping dependences
- Successful use of COMSOL during the development and characterization of a novel high-g accelerometer, e.g.
 - Generating defined mechanical stresses by bending
 - Prediction of thermal influences on sensitivity
- Good agreement between numerical and experimental data
- Outlook
 - Parameter optimization of sensor design with parameter-sweep capabilities of COMSOL
 - Implementation of the giant piezoresistance effect

Thank you for your Attention! Questions?

This work was funded by the Federal Office for Defence Technology and Procurement BWB (Bundesamt für Wehrtechnik und Beschaffung)

Further Information:

Dr. Siegfried Nau Fraunhofer EMI Am Klingelberg 1 79588 Efringen-Kirchen / Germany Tel.: +49 7628 / 9050 – 685 E-mail: Siegfried.Nau@emi.fhg.de Sebastian Heß Fraunhofer EMI Am Klingelberg 1 79588 Efringen-Kirchen / Germany Tel.: +49 7628 / 9050 – 631 E-mail: Sebastian.Hess@emi.fhg.de

