LUZERN

HOCHSCHULE

Heat Removal of a Protection Chip after Surge Pulse

Tom Graf Hochschule Luzern T&A Technikumstrasse 21 CH-6048 Horw Switzerland

HOCHSCHULE LUZERN

Abstract

- EMC protection elements experienced significant heating after surge impulses (253 W).
- The thermal behavior of the protection elements was modeled with the method of finite elements (FEM).
 COMSOL Multiphysics[®] Heat Transfer Module

Equation solved: $\rho c_{P} \frac{\partial T}{\partial t} - \nabla (k \nabla T) = Q$

- The FEM results led to a compact model to allow for design and simulation with simpler tools.
- The company HMT used our results for a new series of protection elements. Sensor circuit and protection elements are now integrated in a single ASIC design.

HOCHSCHULE LUZERN

Test Chip 30

HOCHSCHULE LUZERN

LUZERN

HOCHSCHULE

Model Data

HOCHSCHULE Surface Temperature

COMSOL

OCTOBER 26-28

CONFERENCE

STUTTGART 2011

LUZERN

HOCHSCHULE

Radiation

LUZERN

HOCHSCHULE

Epoxy Resistance

Decrease of contact resistance by a factor 10 reduces T_{max} considerably !

LUZERN

HOCHSCHULE

Test Chip 30

HOCHSCHULE LUZERN

p-n Heat

 $\frac{6.2V}{P^*}$ Zener Diode – for ESD only P^{*} on N-Extension

Scalable device similar to DZPENX1, 8<IM<25 designed for ESD purposes

Parameter	Param. name	Condition	Min	Typical @ 25°C	Max	Unit
Reverse Breakdown Voltage Ratings	V_{KA}	I _K =0.5μA	6.13	6.28	6.42	V
Trench isolation	V _{max}			l l	100	V
Handle potential influence on V_{KA}	dV _{KA}	$-100V < V_{AH} < 100V$ $0.5 \mu A < I_K < 1mA$	1		0.05	V
Leakage current per module	I _{KA}	V _{KA} =5.5V IM=1		0.5		nA
TLP reverse current IM=1	ITLPrev	*1 *2		0.19		A
TLP reverse voltage	VTLPrev	ITLPrev		15		V
TLP forward voltage	VTLPfwd	*2	10			V
MM per module	V _{MMrev}	JEDECA 115A *3	3	30		V
HBM per module	V _{HBM}	100pF 1,5kOhm AIC Q100 accept		350		V
^{*1} T _{pulse} =80ns T _{rise} =10ns ^{*2}	<10% I _{KA}	Increase $V_{KA} = 5V$ ^{*3} I	DIP48 6001	nil ceramic	package	
Lavout Cell:				A		
Dimensions for min	-					
device (8 modules)						
84.7um x 22.8um						
Scale 1500:1						
Module size:						11 11
6.4um x 22.8 um	-					
						11
	_					

^{2.10.7} ESD13

LUZERN

HOCHSCHULE

Details of TC30

Zener structure, "oval"

Table 3: Conductive Layers

Conductive Layers	Resistivity			Thickness				
	Min	Тур	Max	Unit	Min	Тур	Max	Unit
N+Poly Gate >95%	21	26	31	Ω/sq		350		nm
Poly 2	1600	2000	2400	Ω/sq		200		nm
Metall TiTiN/AlsiCu/TiN	54.5	61.5	68.6	mΩ/sq	650	700	750	nm
Metal2 Ti <mark>AlSiCu</mark> TiN	31	,38	45	$m\Omega/sq$	950	,1000	1050	nm
Metal3 Ti <mark>AlSiCu</mark> TiN	12.6ζ	14.6	16.6	$m\Omega/sq$	1950 ζ	2000	2050	nm

sheet resistance of AI: $\rho/d = 2.8 \times 10^{-8}/1 \times 10^{-6} = 30 \text{ m}\Omega/\Box$

Fundamental Technological Parameters

The fundamental technological parameters describe the parameters which are essential for the technology. The compliance of these parameters is the base for achieving the guaranteed quality of an integrated circuit. Furthermore, they are the prerequisite for achieving a reliability on high level. Fundamental technological parameters are subject to statistical process control on test or product wafers.

In this section the fundamental parameters are listed which are checked during the wafer process. Furthermore, fundamental parameters for the description of the essential electrical characteristics of the devices can be found in the chapter PCM (Process Control Monitor).

thermal conductivity of titanium $\approx 22W/(m \cdot K)$; layer sheet resistance Ω/\Box is that of not pure Al

LUZERN

HOCHSCHULE

Layer Structure

LUZERN

HOCHSCHULE

Detailed Model

LUZERN

HOCHSCHULE

Heat Input

LUZERN

HOCHSCHULE **Active Layer Temp.**

LUZERN

HOCHSCHULE

Oxide Barrier

Oxide layers and trenches form thermal barriers !

HOCHSCHULE LUZERN

Compact Model

Parameter	Value	Unit
Ρ	253	W
$T_{J} = T_{G} + T_{1} + T_{2} + T_{3}$	1225 🖌	°C
$T_3 = P \cdot R_3$	48	К
<i>R</i> ₃ "oxide trench"	0.19	K/W
$T_2 = P \cdot R_2$	199	К
$\tau_2 = R_2 \cdot C_2$	1.8×10 ⁻⁵	S
C ₂ (fit) "active silicon"	2.3×10 ⁻⁵	J/K
R ₂ (fit) "buried oxide"	0.79	κ/w
$T_1 = P \cdot R_1$	958	К
$\tau_1 = R_1 \cdot C_1$	4.2×10 ⁻³	S
C_1 (fit) "die + epoxy"	1.1×10 ⁻³	J/K
R ₁ (fit) "die + epoxy"	3.79	K/W

LUZERN

HOCHSCHULE

Validation

Temperature evolution of the bulk silicon and the junction during a 2.0 A surge impulse-equivalent (triangular shape). Time axis is $50 \mu s / div$.

transient

Note the high junction temperature of 153°C after mere 20 μ s and the ultra fast measurement !

The mechanism of heat flux and temperature evolution of the test chip is essentially understood. Material and geometry data of similar chips allow for prediction of the temperature evolution prior to FEM simulations.

HOCHSCHULE LUZERN

Conclusions

- The maximum temperature is governed by the die attach. Heat flux through bond-wires or by conduction or radiation to air is negligible.
- Oxide trenches in the active silicon layer and the buried oxide cause efficient thermal insulation.
- We were able to measure the initial temperature rise after a heat step emulating surge pulse ISO 7637-2: The junction temperature increases by 60 K / μ s.
- A compact model based on exponential fitting reproduces the temperature evolution of the FEM simulation accurately.

HOCHSCHULE LUZERN

Ab Initio Model

P_{in} = 253W

epoxy

2.94

2

0

socket

2.3×10⁻³

921

0.15

Tj2, ab

-initio

spice

1.E-02

model

To emulate the FEM results a Spice model was created. The model consists of the active chip layer (top) and the wafer handle (bottom).

Two-layer model: Ab initio R and C

top layer

b.o.

wafer

t (s)

1.E-01

HOCHSCHULE LUZERN

2 auau Excel Fit

The FEM thermal simulation (blue) can be fitted with two exponential functions (pink). The linear thermal equations should allow to predict the surge pulse behavior prior to FEM simulations.

parameters:

R₁	= 0.92	K/W	R_2	3.85	K/W	80
C_1	= 9.0E-06	J/K	C_2	1.1E-03	J/K	60
τ ₁	= 8.2E-06	S	τ_2^-	4.1E-03	S	00
T _{i1}	= 231	К	T _{i2}	973	К	40
P _v	= 253	W	T_A^{\prime}	= 293K ≡	20°C	40

Boundary conditions (fixed parameters) were $T_A = 20^{\circ}$ C, $T_{j, t=\infty} = 1225^{\circ}$ C (FEM) and $R_{tot} = R_1 + R_2 = (T_{j1} + T_{j2})/P_v$. The <u>three</u> fit parameters were R_1 , C_1 and C_2 .

$$T_{j1} = P_v \cdot R_1 , \ T_{j2} = P_v \cdot R_2$$

$$T_j(t) = T_{j1} - T_{j1} \cdot e^{-\left(\frac{t}{R_1 \cdot C_1}\right)} + T_{j2} - T_{j2} \cdot e^{-\left(\frac{t}{R_2 \cdot C_2}\right)} + T_A$$

25 / 23

HOCHSCHULE

LUZERN

HOCHSCHULE

Layer Thickness

HOCHSCHULE

Dimensions

HOCHSCHULE LUZERN

Layer Model

		k W/(m∙K)	ρ kg/m³	C _p J∕(kg·K)
	Oxide, 1µm	1.38	2203	703
5.7μm	Al + 10% Oxide, 2μm	144	2650	880
	Oxide, 0.9µm	1.38	2203	703
3.7µm	Al + 10% Oxide, 1μm	144 99.5	2650 2410	880 780
	Oxide + 20% Al, 0.9μm	33	2300	740
2.7µm	Al + 10% Oxide, 0.7μm	144	2650	880
	Oxide + 30% Al, ≈1µm ↓	54	2370	770
2.0μm 1.5μm	P-N Heat	163	2230	703
	Si, N-Well, 2μm 0.5μm			
0	Buried Oxide, 0.5µm			
20.0μm	Si Handle, 250µm, polished			