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ABSTRACT

Superparamagnetic nanoparticles have a wide range of
applications in modern electric devices. Recent devel-
opments have identified them as components for a new
type of magnetoresistance sensor based on highly or-
dered monolayers of such nanocrystallites. In this work,
we propose a model for the numeric evaluation of the
sensor properties. Based on the solutions of the Landau-
Lifshitz-Gilbert equation for a set of homogeneously mag-
netized spheres arranged in highly symmetric monolay-
ers, we analyze how different device properties may be
adjusted to specific demands by modifications of the
microstructure. We characterize sensor properties and
identify different measurement regimes which correspond
to specific dominating energy contributions. In partic-
ular, we find a novel measuring mode where increased
field sensitivity is bought at the cost of an inherent de-
vice noise.

Keywords: magnetic nanoparticles, monolayers, gran-
ular giant magnetoresistance, magnetoresistive sensor

1 INTRODUCTION

Small magnetic nanoparticles have been thoroughly stud-
ied during the past decades and, nowadays, form sub-
stantial components in a wide range of different applica-
tions in the field of MEMS- and NEMS-devices. Due to
their permanent magnetic moments, they may be ma-
nipulated by inhomogeneous magnetic fields in microflu-
idic devices which also allows for the selective treatment
of malignant cells in human health care by hyperthermia
or drug delivery techniques [1].

In static assemblies, magnetoresistive effects can be
found. As shown in Figure 1(a), the electric resistance
of a magnetic particle measured in respect to a refer-
ence electrode depends on the relative orientation of
the magnetization of the two components. These types
of nanostructured devices are called spintronic-devices
since the electronic properties are affected by a quantum
mechanic spin-spin-interaction. We will not go into the
details here, but only note that a high scattering of con-
ducting eletrions is obtained for antiparallel alignment
while a parallel orientation results in a low electric re-
sistance.

Figure 1: Schematic image of a magnetoresistive de-
vice based on magnetic nanoparticles. (a) Resistance
of an array of particles and reference electrode. Par-
allel alignment leads to a lower electric resistance than
the antiparallel configuration. (b) A hypothetical array
of such particles. Each particle resembles a bit of in-
formation where the bit state is defined by the electric
resistance value.

If the magnetic moments of individual particles as-
sembled in a particle monolayer would either point down-
or upwards, different resistance values could be inter-
preted by the respective bit-states 0 or 1, Figure 1(b).
Therefore, such an assembly forms a magnetic data stor-
age device with each individual particle resembling one
bit of information. Theoretically, data densities of up
to 10,000 Gigabit/in2 could be obtained by this method
which is well above densities of modern hard drives (Sea-
gate, up to 625 Gigabit/in2, 2011). However, hard drive
technology is only one of a large variety of applica-
tions where such spintronic components play a key role
and open up possibilities for novel MEMS- and NEMS-
designs.

A new idea based on a similar principle such as the
design of granular hard drive technology is the employ-
ment of such granular films for the development of a
novel type of magnetic field sensor [2]. Commonly, mag-
netic fields may not be measured directly, but field in-
formation is drawn from its perturbation of an undis-
turbed system. In macroscopic devices, field measure-
ments via the hall effect or induction coils are a standard



procedure. However, in regard to MEMS- and NEMS-
technologies where trends tend to increasingly smaller
size scales, especially, the electric contacting procedure
becomes a crucial factor in the manufacturing process.
Also, it may not seem suprising that at these scales dif-
ferent physical phenomena are predominant. Similarly,
as for example the dynamics of colloids in liquids are in-
creasingly governed by van der Waals interactions on the
nanoscale, in nanoparticalur systems, interatomic cou-
pling effects gain significant importance and may over-
come electromagnetic interactions.

In this regard, it is beneficial that various prepara-
tion methods are known to obtain highly ordered two-
dimensional arrays of magnetic particle films on the
micro- or nanoscale [3]. However, with nanoscaled sys-
tems significantly less accessible to direct observations,
the design of novel devices relies strongly on results of
numerical calculations.

2 GOVERNING EQUATIONS

In order to ensure the reliability of the numerical predic-
tions, a strong understanding of the dominant physical
properties is important. Therefore, our first step is to
develop an accurate framework to calculate the mag-
netic state of an assembly of magnetic nanoparticles.
Along the volume of each particle, a magnetization dis-
tribution M can be found which creates a magnetic stray
field in the surrounding space and, in particular, at the
positions of nearby particles. From Maxwell’s equations
of magnetostatic

∇ ·B = 0, (1)

∇×H = 0, (2)

together with the constitutive law

B = µ0(H + M), (3)

we can calculate the magnetic field H for a given magne-
tization distribution M. However, while these equations
obviously form a part of our system, they do not pro-
vide us with the information we are actually interested
in, which is the equilibrium configuration of M itself.

2.1 Ferromagnetic materials

The dynamic evolution of a magnetization distribution
is governed by the phenomenological Landau-Lifshitz-
Gilbert equation [4]

∂M

∂t
= −γM×Heff +

α

MS
M× ∂M

∂t
, (4)

with MS the saturation magnetization which is a mate-
rial parameter, α a dimensionless damping constant and

Figure 2: Properties of ferromagnetic systems. (a) Pre-
cession of a magnetic moment vector under the influ-
ence of an effective magnetic field Heff which coincides
with the precession axis. The black and red line show
undamped and damped precession, α = 0 and α > 0,
respectively. (b) Magnetic distribution in a elliptic thin
film for high and low exchange constant. (c) Different
anisotropy energy surfaces. The left plot shows an uni-
axial symmetry, the right a cubic anisotropy. Red areas
coincide with magnetically hard axes, blue with easy
axes. (d) Magnetic distribution for uniaxial anisotropy.

γ the gyromagnetic ratio. The two different contribu-
tions on the right hand side can be easily visualized as
shown in Figure 2(a). The first summand corresponds
to a precession term; the magnetization vector M ro-
tates around an effective magnetic field Heff . Without
the second term, the altitude angle would be a constant
of the motion since no energy leaves the system. How-
ever, due to local damping mechanisms summarized in
the second term, the magnetic vector M reaches in equi-
librium state by alignment with the effective magnetic
field vector.

In order to completly specify equation (4), we need to
find an appropriate expression for the effective magnetic
field Heff . If we set M = MSm̂, commonly, the following
decomposition is chosen

Heff =
2A

µ0MS
∆m̂− 1

µ0MS

δfani(m̂)

δm̂
+ Hd + Hex. (5)

So what do all these terms stand for? The first summand
refers to a quantum mechanic force, the exchange cou-
pling. From a very intuitive point of view, we may visu-
alize a ferromagnetic material by its capability to locally
align its magnetization or, in other words, by its ten-
dency to minimize the curvature ∆Mi in the magnetic
distribution. In this regard, the exchange constant A
may be understood as a measure for the magnetic stiff-
ness of a ferromagnetic material: the higher the value
of A, the less magnetic domains are found within the
magnetic volume, Figure 2(b). The second term refers
to magnetocrystalline anisotropy. Within a finite ele-
ment simulation, we usually treat the magnetic volume



as a homogeneous, isotropic continuum which is not the
case for real systems. The crystallographic (anisotropic)
microstructure introduces so called hard and easy direc-
tions which are energetically least and most favorable,
respectively. This angular dependency is given by the
anisotropy functional fani, examples are shown in Fig-
ure 2(c). The demagnetization field Hd is the magnetic
field which results from the magnetic object itself. Com-
monly, the resulting energy contribution is very low if
the total magnetic moment of the considered object is
close to 0. Finally, all external field effects are summa-
rized in Hex.

As stated above, the exchange contribution imposes
a strong energy penality along regions where a high cur-
vature in the magnetic distribution can be found. Con-
sequently, high curvature is only present if the energy
loss is compensated by the energy gain of another contri-
bution. If we neglect anisotropy effects for the moment,
typically, a strong interplay between exchange coupling
and stray field energy becomes the main driving force: a
highly structured magnetic distribution as shown in Fig-
ure 2(b), bottom, minimizes the magnetic stray field en-
ergy, but results in a high exchange energy while configu-
ration shown in 2(b), top, entails low exchange but high
stray field energy. The influence of a uniaxial anisotropy
with easy axis parallel to the short ellipse axis is shown
in Figure 2(d). However, the equilibrium state of a sys-
tem does not only depend on the different material pa-
rameters but also on the initial state.

2.2 Magnetic nanoparticles

Equation (4) holds for all types of ferromagnetic systems
though, of course, it may not be the most handy form
whenever there are additional information on the type of
system we are interested in. As stated above, exchange
coupling imposes an energy penality along regions with a
high curvature in the magnetic distribution. Depending
on the value of A, a change of the magnetization direc-
tion will only occur on a certain length scale. Therefore,
if the dimension of an object in a certain direction n̂ falls
below this critical size threshold, the change of orienta-
tion of magnetic components is very small and may be
neglected

〈n̂,∇mi〉 ≈ 0. (6)

For magnetic nanoparticles, this holds in all directions
and we may, therefore, approach their magnetic distri-
butions by a homogeneous magnetization or the particle
by magnetic dipole of dipole moment m which results
in the magnetic stray field [5]

Hdipole =
1

4µ0

(
〈r,m〉r
r5

− m

r3

)
. (7)

By approximating the magnetic state of a nanoparticle
by a homogeneous magnetic distribution, the first sum-
mand in equation (5) is identical to 0. Consequently,

Figure 3: Equilibrium states of various magnetic parti-
cle assemblies. Particles with a diameter of d = 16 nm
and a saturation magnetization of MS = 1000 kA/m are
employed. The left side shows the xy-magnetization,
the right the z-component.

all partial derivatives in respect to space vanish and in-
stead of solving a set partial differential equations, our
model simplifies to a set of ordinary ones. For a set of
N such dipole particles, the governing equations may be
rewritten in matrix form as [6]

(Id− αM)
∂m

∂t
= γMHeff (8)

with Id the identity mapping on R3N×3N , by M the block
diagonal matrix

M =

 M1 0
. . .

0 MN


with Mn,ij = εijkm̂n,k, n = 1, ..., N and

∂m

∂t
=

∂

∂t
(m̂x,1, m̂y,1, ..., m̂x,2, ...)

T

Heff = (Heff,x,1, Heff,y,1, ...,Heff,x,2, ...)
T .

These equations were solved in COMSOL Multiphysics
employing the micromagnetics plug-in PADIMA. For
more information see also [7].

2.3 Equilibrium properties and
response functions

In order to obtain a first qualitative understanding of
the magnetic behaviour of interacting magnetic mon-
odomain particles, we take a look at the magnetic equi-
librium state of different particle assemblies, Figure 3.



The calculations were conducted for 64 particles, ar-
ranged in three different cubic assemblies of increasing
aspect ratio: (a) 4×4×4, (b) 8×4×2 and (c) 8×8×1.
The figure shows azimuthal (colorcode: disc) and out-
of-plane (colorcode: cone) magnetic components on the
left and right sight, respectively.

In comparison to the continuous ferromagnetic sys-
tems (Figure 2), no local ordering can be found in the
way that if we choose an arbitrary particle and calculate
the magnetic moment of the particle and its neighbors,
the resulting value is approximately 0. The absence of
exchange coupling due to spatial separation of individual
nanoparticles results in a low degree of ordering which
minimizes the magnetic stray field energy. Further, by
increasing the aspect ratio, (a) → (c), the magnetic ori-
entation is increasingly confined into the particle plane.
Again, minimization of magnetic field energy is the main
driving force. However, it is important to note that
modifications of geometrical properties have strong im-
pact on the magnetic state. As we will see later on, this
effect may be readily exploited to adjust certain device
properties.

If we apply a homogeneous external magnetic field,
the response functions show a strong dependency on the
field direction. Figure 4 shows the hysteresis loops of the
assemblies, i.e., we calculated the magnetic states for
different external field values beginning at a magnetic
field strength of 100 kA/m which is step-wise reduced to
a value of −100 kA/m and afterwards increased again to
100 kA/m. The cubic case 4× 4× 4 almost exhibits an
isotropic paramagnetic behaviour with only minor hys-
teresis effects for a field parallel to the [1 1 1]-direction
of the cubic lattice (blue line). Contrary, the planar
geometry 8×8×1 shows a strong ferromagnetic charac-
teristic for external fields applied parallel to the particle
plane (black, red line) but exhibits a perfect paramag-
netic behavior of very low susceptibility for out-of-plane
mearsurements (green line).

2.4 Influence of microstructure

In order to design nanoscale devices tailored to specific
tasks, we need to understand how various parameters
within the setup influence the response properties. So
what are the degrees of freedom in our system that can
easily be manipulated in regards to the experimental
sample preparation? There is a wide range of different
approaches that either affect the magnetic nanocompo-
nents or the assembly as a whole. Here are four exam-
ples:

assembly symmetry: Different preparation methods
of particle assemblies may result in different spa-
tial ordering such as cubic or hexagonal lattice
symmetries.

impurities: Impurities may be introduced by various

Figure 4: Response of magnetic particle ensembles to an
external magnetic field for (a) 4×4×4 and (b) 8×8×1
along indicated crystallographic axes.

approaches such as employing particles with a wide
size distribution or mixing magnetic and non-magnetic
nanocrystals.

particle magnetism: Particles of different materials
can be employed. Nowadays, there are lots of par-
ticle species available commercially.

particle crystallography: Depending on the material
history, same materials may be present in different
crystallographic phases which introduces different
anisotropy scenarios.

In order to get a first impression on how different
variations influence the magnetic response properties,
we introduce a reference system. This reference sys-
tem consists of 10 × 10 particles which are assembled
in a hexagonal lattice with lattice constant a = 20 nm.
The particle radius is set to RP = 8 nm, the saturation
magnetization to MP = 1000 kA/m and the anisotropy
functional to fani ≡ 0. For comparison, we only change
one of the parameters at a time and leave all remaining
ones unchanged:

1. MP = 2000 kA/m

2. unaxial magnetocrystalline anisotropy

3. cubic magnetocrystalline anisotropy

4. introduce 50 vacancies



Figure 5: Hysteretic response of arrays of 10× 10 mag-
netic nanoparticles for different particle properties.

Results for the different scenarios 1 to 3 together with
the reference sample are shown in Figure 5. A higher
magnetic moment (red line) increases the magnetic fields
necessary to break the interparticular dipole coupling
and, therefore, the sample reaches a saturated state
for higher field strengths. Different anisotropy assump-
tions result in increased coercive and saturating mag-
netic fields. In general, the more easy axes can be found
in a material, the softer the switching behavior which
coincides with our results when comparing the uniaxial
(blue) to the cubic (green) or isotropic anisotropy case.

The influence of vacancies is shown in Figure 6. Sim-
ilarly to the influence of uniaxial anisotropy, the result-
ing response curve shows a much higher coercive field
in comparison to the reference system. Indeed, vacan-
cies introduce a local geometric shape anisotropy. As
indicated in Figure 6, in the equilibrium state, the mag-
netic alignment follows the microstructure of the system
which introduces an additional energy barrier and, con-
sequently, a harder switching characteristic. We already
observed this when increasing the aspect ratio of the 64-
particle array, Figure 3 for the out-of-plane component.
Here, in contrast to the previous case, each subsystem
has two stable configurations given by the two different
magnetization directions. However, the energy barrier
to switch between these states is very high and, conse-
quently, an increased hysteresis is entailed.

3 TRANSPORT PROPERTIES

From the magnetic properties of an object and its mag-
netic responses to an external perturbation, many infor-
mation about the external source may be concluded [8].
Unfortunately though, this would require the real-time
measurement of the systems magnetic properties itself.
A physical quantity that can measured at a very high
precission is voltage or, if the current over the device is

Figure 6: Influence of vacancies: magnetic moments
align with the geometric microstructure of the assem-
bly which entails a significant increase of the coercive
field due to a high local geometric shape anisotropy.

a constant, resistance. Now, if it would be possible to
find a relation between the magnetic properties of the
granular film system and the magnetic response, simi-
lar to the single particle systems shown in Figure 1, it
should be possible to measure a magnetic field by means
of measuring the electric response of the device.

3.1 GMR effect in granular systems

The giant magnetoresistance (GMR, Noble prize, 2007)
effect was originally found and studied in magnetic mul-
tilayer systems [9], [10]. The resistance of a magnetic
thin film device varies strongly depending on the rel-
ative orientation of the magnetization within the lay-
ers and, therefore, can be manipulated by an external
magnetic field. In 1992, Berkowitz et al. [11] and, in-
dependently, Xiao et al. [12] reported similar observa-
tions within granular systems of magnetic particles en-
capsulated in a metallic matrix. The relative increase
of resistance, the GMR-ratio, of such discrete magnetic
patterns is correlated to the deviations of the angular
distribution from the average direction. According to
V. Wiser [13], it is

GMR = 1− C

2
〈1 + cos θ〉2, (9)

where C is a mearsure for the spin dependence of elec-
tron scattering and θ the angle between adjacent mag-
netic moments. For the sake of simplicity, we will set
C = 1 in the following.

How does this help to design a nanoscale magnetic
field sensor? To understand this, let’s just evaluate
equation (9) for different limit cases. If we apply a very
strong homogeneous magnetic field, the dipolar particle
coupling will be overcome and the magnetic moment of
each particle aligns with the field direction. Therefore,
all moments point into the same (and average) direction
and we have θ ≡ 0 and with C = 1 also GMR = 0. A



homogeneous magnetic distribution or a strong homo-
geneous perturbation field result in a low electric resis-
tance. In the opposite case, that there is no magnetic
field applied, we have already seen that the ensemble
reaches an equilibrium state with a vanishing magnetic
moment and a low degree of magnetic order. Conse-
quently, low external fields that do not overcome the
dipolar coupling result in a high electric resistance or
high GMR-ratio ≈ 1.

For the experimental realization, the particle mono-
layer needs to be surrounded by a conducting matrix.
This can be achieved by depositing a thin metallic film
e.g. via a sputtering procedure. At the moment, we
will neglect possible influences of this metallic filler in
our analyses. However, additional calculations need to
be carried out in the near future incorporating possi-
ble linear and biquadratic coupling phenomena between
contiguous nanocrystals.

3.2 The gGMR-sensor

At this stage, we have basically developed the concep-
tional basis of a novel type of granular giant magne-
toresistance (gGMR) sensor. This type of device offers
one major advantage in comparison to continuous mag-
netic film arrays. When trying to downscale thin mag-
netic films, they reach a size scale (at about several hun-
dred nanometers) where magnetic exchange coupling be-
comes the dominating force in the system and makes
their magnetic behavior very stiff. Hence, their response
to an external perturbation is commonly below the ther-
mal device noise and it is not possible to measure any
signal. Via spatial separation of individual magnetic
cores, we have overcome exchange coupling. Individ-
ual particles are much more free to align their magnetic
moment parallel to external fields and, therefore, an in-
creased response to even field of small strengths on the
nanoscale is expected.

In order to study the array’s capability to detect and
measure magnetic fields, we introduce a probe particle
that is placed on top of the array in some distance and
calculate the response. Again, we assume a 10×10-array
of hexagonally ordered isotropic particles of magnetiza-
tion MS and radius R = 8 nm. For the probe particle,
we set RP = 20 nm, MP = 1000 kA/m and place it at
a height of z0 = 50 and 100 nm. The corresponding re-
sponse maps for the particle placed at different (x, y, z0)
coordinates is shown in Figure 7.

If the probe particle is placed at some distance, the
resulting GMR-response map (top) shows a very smooth
characteristic while the GMR-amplitude, the difference
between maximum and minimum value reached, of about
3.6% is not very high which would only allow for low
temperature applications. However, we observe a sig-
nificant increase to about 16% if the probe particle gets
closer to the sensor. As we can see, this increased sensi-

Figure 7: Magnetic response in respect to the position
of a probe particle of radius RP, magnetization MP =
1000 kA/m at heights z0 = 50 and 100 nm.

tivity is bought at the cost of an inherent device noise.

CONCLUSION

We have developed a numerical model for the simula-
tion of discrete dipolar magnetic particles and success-
fully implemented the governing equations into COM-
SOL Multiphysics. This framework allows for the anal-
ysis of properties of magnetic particles arrays such as
anisotropic response functions, coercive fields and hys-
teretic behavior. The modeling led to the conceptional
design of a novel type of spintronic devices. First ex-
perimental realizations based on the numerical results
show the predicted characteristics and features.
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