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Ferrofluids 

• Ferrofluids 
– Nanosized particles in 

carrier liquid 
(diameter~10nm) 

– Super-paramagnetic, single 
domain particles 

– Coated with a surfactant 
(~2nm) to prevent 
agglomeration 

• Applications 
– Hermetic seals (hard 

drives) 
– Magnetic hyperthermia for 

cancer treatment  
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S. Odenbach, Magnetoviscous Effects in Ferrofluids: Springer, 2002. 



Motivation 

• Prior ferrofluid problems solved in COMSOL are 
usually in spherical and cylindrical geometries 

• Ferrofluid pumping in planar geometry subjected 
to perpendicular and tangential magnetic fields 

– Well posed problem with analytical solutions 

• Traditionally solved using mathematical packages 
such as Mathematica 

– Can COMSOL replicate these results? 

3 



Planar Geometry Setup 
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How to impose Bx field? 

(a) 

DC Current source 
gives H=NI/s 

 

 

(b) 

V=Λ0δ(t)->B=Λ0/A 

X. He, "Ferrohydrodynamic flows in uniform and non-uniform rotating magnetic fields," Ph.D thesis, Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 2006. 
S. Khushrushahi, "Ferrofluid Spin-up Flows in Uniform and Non-uniform Rotating Magnetic Fields," PhD, Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, 2010. 
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• Extended Navier-Stokes Equation 
 
 
• Boundary condition on v,   

• Conservation of internal angular momentum 
 
 
 
• Boundary condition on ω unless η’=0, 

  ρ [kg/m3] is the ferrofluid mass density, p [N/m2] is the fluid pressure, ζ [Ns/m2] is the vortex viscosity, η [Ns/m2] is the dynamic shear viscosity, λ 
[Ns/m2] is the bulk viscosity, ω [s−1] is the spin velocity of the ferrofluid, v is the velocity of the ferrofluid, J [kg/m] is the moment of inertia density, η ’ 
[Ns] is the shear coefficient of spin viscosity and λ’[Ns] is the bulk coefficient of spin viscosity, φ[%] is the magnetic particle volume fraction  

 

Governing Equations  
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Incompressible flow =0 
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Neglecting Inertia 

Neglecting Inertia 

3
2

 

)( 0wallr R v

( ) 0wallr R ω



Magnetic Field Equations 

• Maxwell’s equations for 
non-conducting fluid 

 

 

 

 

 

• Assumption 

 

• Magnetic Relaxation 
Equation 

 

 

• Langevin Equation 
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Ms [Amps/m] represents the saturation magnetization of the material,Md [Amps/m] is the domain 
magnetization (446kA/m for magnetite), Vh is the hydrodynamic volume of the particle,Vp is the magnetic 

core volume per particle, T is the absolute temperature in Kelvin, k = 1.38 × 10−23 [J/K] is Boltzmann’s 
constant, f0 [1/s] is the characteristic frequency of the material and Ka is the anisotropy constant of the 

magnetic domains 
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Substituting in Relaxation Equation 
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Force and Torque Densities 
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Linear and Angular Momentum Eqns 



Normalization and Substitution 
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Torque Density 

• Small spin limit Torque 
Density 
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• Analytical Torque 
Density 
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COMSOL Setup 

• Linear Momentum 
Equation 

– 2D Incompressible 
Navier Stokes Module 

 

COMSOL 
Subdomain 
quantities 

Value 

ρ 0 

η 

Fx,Fy 
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Inlet BC – Pressure, No viscous Stress  

Outlet BC, Normal Stress 
f0=0  
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No Slip BC 
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COMSOL Setup 

• Angular Momentum 
Equation 

– General PDE Equation 

 

COMSOL 
Subdomain 
quantities 

Value 

Г 0,0 

F 

ea,da 0,0 
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Boundary 
Conditions 

COMSOL Quantities 

All walls (if            ) Dirichlet boundary 
condition 
R= -       , G=0 

All walls (if            ) Neumann 
boundary condition 
G=0  

y

0 
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COMSOL Setup 

• Magnetic Relaxation 
Equation 

– 2D Perpendicular 
Induction Currents, 
Vector Potential 

  
COMSOL Subdomain 

quantities 
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Boundary 
Conditions 

COMSOL Quantities 

All walls H0 =  
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η’≠0 Results, Weak Rotating Fields 
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Parameters used –  0
'1, 1, 1, 0.00001, 1, ' 0.01p

z
   


      



S. Khushrushahi, "Ferrofluid Spin-up Flows in Uniform and Non-uniform Rotating Magnetic Fields," PhD, Dept. of Electrical Engineering and Computer Science, MT, Cambridge, 2010. 



η’≠0 Results, Weak Rotating Fields 
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Parameters used –  0
'1, 1, 1, 0.00001, 1, ' 0.01p
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S. Khushrushahi, "Ferrofluid Spin-up Flows in Uniform and Non-uniform Rotating Magnetic Fields," PhD, Dept. of Electrical Engineering and Computer Science, MT, Cambridge, 2010. 



η’=0 Results, Strong Rotating Fields 
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Parameters used –  0
'1, 1, 1, 0.00001, 1, ' 0p
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S. Khushrushahi, "Ferrofluid Spin-up Flows in Uniform and Non-uniform Rotating Magnetic Fields," PhD, Dept. of Electrical Engineering and Computer Science, MT, Cambridge, 2010. 



η’=0 Results, Strong Rotating Fields 
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Parameters used –  0
'1, 1, 1, 0.00001, 1, ' 0p
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Small Spin Velocity limit does not 
hold  

S. Khushrushahi, "Ferrofluid Spin-up Flows in Uniform and Non-uniform Rotating Magnetic Fields," PhD, Dept. of Electrical Engineering and Computer Science, MT, Cambridge, 2010. 



“Kinks” for special parameters 
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Parameters used –  0
'1, 0.0592, 1, 5, ' 0p
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Conclusions 

• Ferrohydrodynamic flows are difficult to model  
– Coupling of five vector equations 

• Linear and angular momentum equations 
• Gauss’s law for magnetic flux density 
• Ampere’s law with no free current 
• Ferrofluid magnetic relaxation equation 

• Solving the basic planar geometry ferrofluid 
pumping problem is valuable before moving to 
cylindrical and spherical geometries 

• COMSOL gives identical results to prior software 
of choice - Mathematica  
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