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Balloon Expandable Stent 

• Percutaneous transluminal coronary angioplasty (PTCA) is 
a wide spread method for treatment of coronary artery 
disease 

• Balloon expandable stents are preferable in treatment of 
coronary artery stenosis  

• Coronary stents are smooth metallic mesh like structures  

• Stents can be either in tubular or in coil shape 

• Stents are deployed inside arteries with balloon expander 

• Balloon is inflated to expand the stent till it reaches to 
artery wall 

• Finally, balloon is removed, and expanded stent continues 
to provide mechanical support to the artery wall 

 

Stenosis 

Stent with Balloon Expander 

Stent in Artery 
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Coronary Stents 
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Different Types of Stents 

Clockwise from Top 

Left:  

A. Tubular Mesh 

B. Tubular wire 

C. Coil 

D. Hollow slotted tube 

with open and 

closed struts 

A B 

C D 
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Stent Materials Used in the Model 

• 4 sample stents with different materials are used 

• All stents have same geometrical properties  

• Same initial deployment pressure applied to all stent  

• Materials are chosen which are commonly used in today’s stent 
manufacturing.  

• stent materials : 

1. Stainless steel 316 L Annealed 

2. Nitinol (austenite) – (55% nickel, 45% titanium) 

3. Elgiloy (heat treated at 525 c) – 15.5Ni, 2Mn, 1Be, 0.15C, 
balance Fe 

4. Tantalum (Pure)  
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  Stent Materials Properties 
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MODELLING USING COMSOL 

VERSION: COMSOL 3.5a 

 

STRUCTURAL MECHANICS MODULE 

 

Solid Stress-Strain 

 

Static analysis, elasto-plastic material model 
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Theoretical Background 
• The Structural Mechanics model 

– Current model uses Solid Stress Strain application mode 

– it aims to solve for displacement, strain and stress in 3D 

• Fundamental Relationships 

– Strain Displacement Relationship 

– Stress Strain Relationaship 

• Implementation and Analysis 
– Implementation based on weak formulation of the equilibrium equations of stresses 

              (where σ is the stress tensor) 

– Substituting with the fundamental relationships, Naviers’ displacement equation is 
obtained 

– Analysis types 
• Static 

• Eigenfrequency 

• Transient 

• Current model uses static analysis. Solver has been selected accordingly.  
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• Stent Type: Palmaz Schatz (J&J Cordis 
®) 

• Shape: Hollow slotted tube 

• Length: 8 mm 

• Diameter: 1.37mm 

• Thickness: 0.1mm 

• 6 Identical units are linked with struts 

Model Geometry 

Palmaz-Schatz stent: Before deployment 

Palmaz-Schatz stent: After deployment 

(Fully expanded ) 

Identical slots 

Struts 

Symmetry 

Boundary 

Fixed end 

Fixed end Free end 
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Stent 

Type 

Young 

modulus 

Poisson’

s  

Ratio 

Ultimate 

Tensile 

Strength 

Yield 

Strength 

Density Length Diameter 

(Mounted) 

Stainless 

Steel 

193 0.3 550 300 7850 8 

3.681 

Nitinol 83 0.3 960 560 6478 8 
1.568 

Elgiloy 190 0.226 1020 520 8300 8 
1.483 

Tantalum 185 0.35 205 170 1669 8 
3.681 

Modeling Parameters 

Constant Definition: Young modulus, poisson’s ratio, Yield Strength, Isentropic 

Hardness ratio have been given for different  

Sub-domain setting: Load, Density have been set up in physics mode, sub-domain 

setting 
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GOVERNING EQUATIONS 
Governing Equations  

A normal load applied acting radially outward on stent wall 

 

Equation for load: 

Load_max*((para<=1)*para+(para>1)*(2-para)). 

 

Navier’s displacement equation:  
 

Load 

•  From clinical study, it is found that standard 0.3 MPa or 2 atm pressure is applied 

to inflate the balloon.  

• In the study, a radially outward pressure is applied on the inner surface of the stent.  

• During loading, pressure is increased with the parametric solver to a maximum 

value of pmax = 0.3 MPa.  

• Followed by decreasing the load to zero to obtain the final shape of the deformed 

stent 
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BOUNDARY CONDITIONS 
Boundary Condition 

• Symmetry boundary conditions 

• Prevents rigid body translation along y and z direction  

• Prevents rotation around all axes 

• A point constraint along x direction to prevent rigid body translation 

along x 
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MESH GENERATION 

• Predefined fine mesh size has been chosen in Free 
mesher parameter 
• Tetrahedral elements (Lagrangian-Quadratic) 
• Approximately 7300 elements generated  
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Results 
• Outputs 

– Von Mises Stress  
– Diameter deformation in all directions(u,v,w) 
– Integral volumetric deformation (u,v,w) 

 

• Fully deformed stent after 

expansion 

(nitinol material) 

• Measure: Boundary 

deformation (Displacement 

(m)) 

• Color legend shown at right 

A Sample Output of Model 
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Comparison of Stress Developed 
Max. Von Mies Stress

(Mpa)

0
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1000

Stainless

steel

Nitinol Elgiloy Tantalum

Max. Von Mies Stress
(Mpa)

Sl. No. Materials 

Max. Von Mises Stress 

(Mpa) 

Maximum Displacement 

(mm) 

1 Stainless steel 939.1 3.681 

2 Nitinol 762 1.568 

3 Elgiloy 847.3 1.483 

4 Tantalum 939.1 3.681 

High Stress 

Low stress 

Mises 
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Comparison of Volume 
Deformation 

Integral Deformation

0

0.5

1

1.5

2

2.5

3

Stainless
Steel

Nitinol Elgiloy Tantalum

Deformation

Stent Stainless Steel Nitinol Elgiloy Tantalum 

Deformation 2.64 0.9 0.67 2.64 

Small Deformation 

Large Deformation 
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Stress and Deformation in 
Stainless Steel 

High Stress 

Concentration 

Region 

Maximum 

Deformation 

Low Stress 

Concentration 

Region 

Minimum 

Deformation 

Fracture will initiate as stress exceeds 

the ultimate tensile strength 
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Stress and Deformation in Nitinol 

High Stress 

Concentration 

Region 

Maximum 

Deformation 

Fully expanded Nitinol Stent 

Fracture will not initiate as stress does not exceed 

the ultimate tensile strength 

Dogboning 

phenomena 
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Deformation Process Monitoring 

Plot of load parameter vs. radial deformation 
Load Parameter 

Diameter 

Deformation 

Nitinol is 
preferable as it 
remain the shape 
as predefined 

(1.3 mm diameter 
approx. in this 
case) 

The plot shows 

a standard 

characteristic of 

mechanical 

behavior of 

shape memory 

alloy Nitinol 
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Detailed Deformation Study of Different 

Stent 
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Study of Stress developed and Fractures 

• Above comparison shows that fracture risk is there in case of Stainless steel 
and Tantalum stents. 

• In case of nitinol and elgiloy, fracture will not occur as their ultimate tensile 
stresses are higher than the maximum von Mies stress developed. 

• Here, the load on stents and stent geometries are kept constant 

Mises 
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Conclusions 
• The study of deformation and stress development during 

the stent deployment process are important for 
determining the stent efficacy 

• Comparison of different stent materials’ mechanical 
properties during the expansion process is important to 
decide the preferred material to choose 

• The comparison of stress developed during the stent 
expansion process determines the risk factors of 
developing fractures inside stents 

• The current model results shows that, with constant 
pressure load on stent wall and constant stent geometry, 
fracture development risks in nitinol and elgiloy stents 
are less and that in stainless steel and tantalum are 
more 
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