Voltage and Capacitance Analysis of EWOD System Using COMSOL

Debanjan Das¹, Shiraz Sohail¹, Soumen Das², Karabi Biswas¹

¹Department of Electrical Engineering ²School of Medical Science and Technology

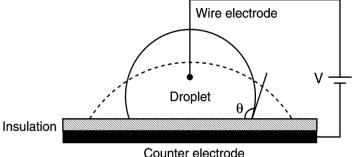
IIT Kharagpur, Kharagpur

Nov 05, 2011

Content

Introduction

- Motivation and Objective
- Modeling of EWOD system
- Model Definition
- Voltage Distribution
- Effect of Dielectric layer
- Capacitance Analysis
 - Droplet's Position
 - Droplet's Composition
- Conclusion
- References


Digital Microfluidic: State of the Art...

- Manipulation of discrete droplets on an electrode array using electric fields-"Droplet processors"
- ElectroWetting On Dielectric (EWOD) has now become one of the best way to manipulate the droplet in DMS
- ➤ What is EWOD?
 - □ Electrical control of wettability of liquids on a dielectric material

> Application of V reduces θ due to lowering of the effective solid–liquid interfacial energy

$$\cos\theta = \cos\theta_0 + \frac{\varepsilon_0\varepsilon_r}{2d\gamma_{LV}}V^2$$

➢ Main physics behind EWOD phenomenon is electrostatic energy

Schematic of Traditional EWOD system

• Advantages of EWOD:

- Has no mechanical part
- Control parameters are in electrical domain
- Can perform all operations on same device by programming
- Easy to fabricate

• Applications:

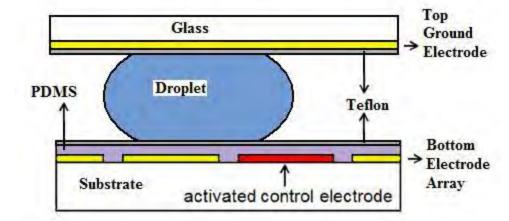
- Lab-on-a-chip systems
- > MEMS-based fluidic devices
- > Biomedical devices
- Chip cooling
- Variable focal length lenses

PCR, Enzyme Assays,

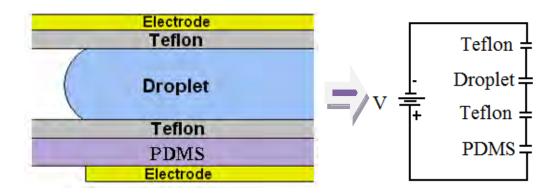
 Proteomics, DNA Hybridization

Motivation

- Idea: Lab-on-a-Chip for clinical diagnoses
 Use EWOD phenomenon
- □ Problem with EWOD system:
 - May damage the cells with high applied
 - Very often droplet loses its track
- Understanding of the electrostatic properties
 - Voltage distribution
 - Capacitance


Objective

Analysis of voltage distribution in EWOD system
 Applied voltage across test sample


- Modeling and analysis of capacitance
 - □ Current position of droplet
 - □ Composition of the sample

Modeling of EWOD System

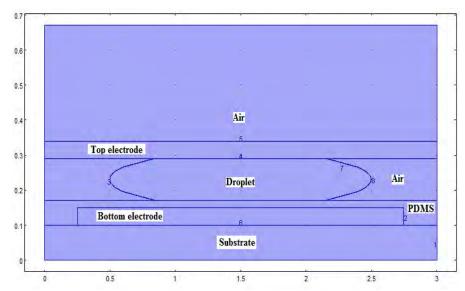
EWOD system is
 very similar to a
 parallel plate capacitor

Each addressable position can be modeled as a number of parallel plate capacitors connected in series

Cross section of EWOD system and equivalent electrical circuit

COMSOL Conference Bangalore 2011

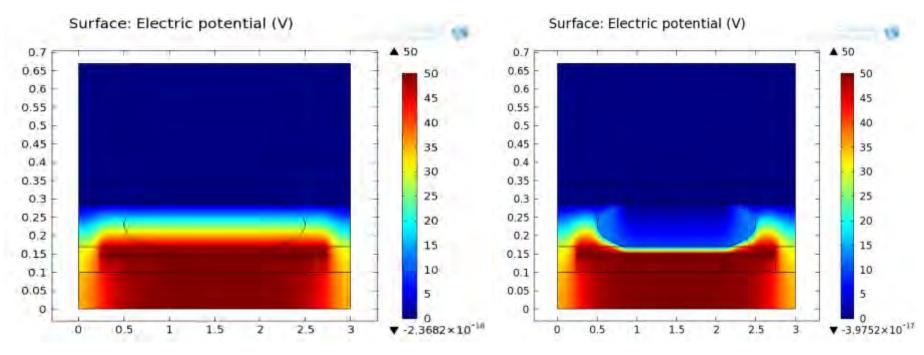
Cont.....


The equivalent capacitance in each measurement volume:

$$C_{Fi} = \frac{\varepsilon_0 \varepsilon_T \varepsilon_P \varepsilon_{Fi} A}{\varepsilon_{Fi} (2\varepsilon_P t_T + \varepsilon_T t_P) + \varepsilon_T \varepsilon_P t_G}$$

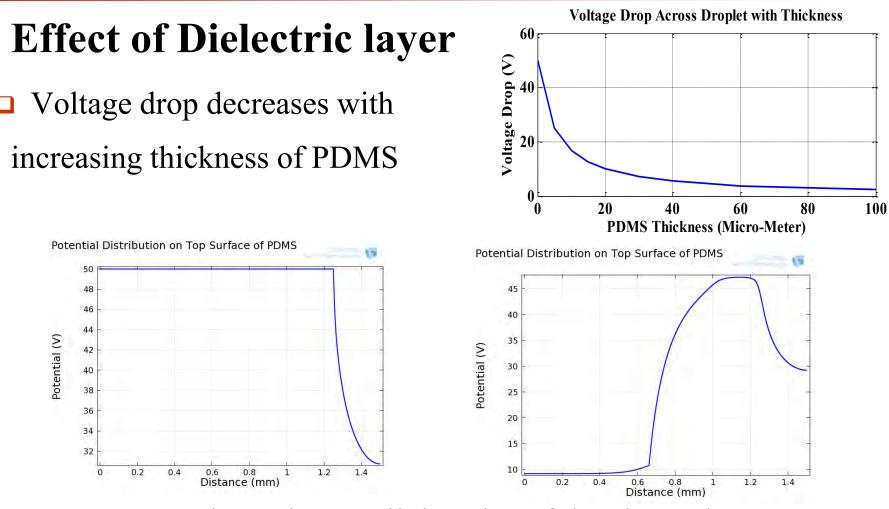
- \Box ϵ is a dielectric constant
- \Box A is the area of the electrode
- \Box t is the thickness
- □ T, P, G and F_i denote the Teflon layer, the PDMS layer, the gap between the substrates, and the fluid in the measurement volume respectively

Model Definition


- DC Electrostatic physics under AC/ DC module
- Electrode dimension
 - □ 2 mm x 50 μm.

- Height between top and bottom electrode is $80 \ \mu m$.
- PDMS thickness 20 μm
- Dielectric constant
 - □ Water- 80, Air-1, PDMS- 3
- Boundary condition
 - Ground- Top electrode, Terminal- Bottom electrode

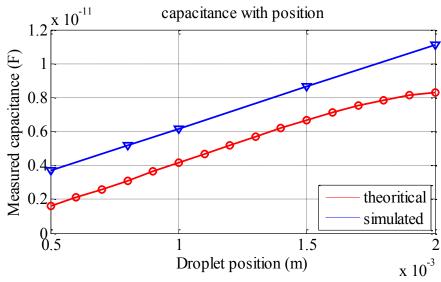
Voltage Distribution


Voltage distribution in EWOD system

Air filling the gap

♦94.6% voltage drop across the gap Water filling the gap

18%voltage drop of total applied potential



- □ A constant voltage drop until the edge of the electrode
- Maximum voltage drops across the PDMS at the edge of droplet

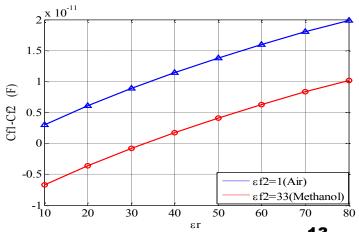
Capacitance Analysis

Monitoring Droplet's Position

- □ In each position system forms a parallel plate capacitor
- Capacitance value is simulated by changing the droplet's position
- □ A linear relationship between the capacitance value and droplet position x_{10}^{-11} capacitance with position
- By developing a capacitance measurement system its position can be monitored

Capacitance Analysis

Identifying Droplet's Composition


- □ Capacitance value differs between fluids and their composition
- □ Difference between the measured and a reference capacitance

$$C_{F1} - C_{F2} = \frac{\varepsilon_0 A}{t_G} \phi(\varepsilon_{F1} - \varepsilon_{F2})$$

□ F1 and F2- fluid being examined and a reference fluid

 $\Box \text{ Changing of F1} \implies \varepsilon_{F1} \text{ changes} \implies C_{F1} - C_{F2} \text{ changes}$

Difference gives information of droplet composition or percentage of mixing.

Conclusion

- □ Voltage distributions studied with respect to dielectric layer thickness and the position of the droplet
- □ Voltage drop observed across the dielectric layer can be reduced by increasing dielectric thickness
- □ Lower voltage may protect cells from damage
- □ Both simulation and theoretical results show that capacitance value changes linearly with the droplet position
- □ Accurate capacitance measurement will give indication about droplet's proper position and idea about percentage of mixing
- □ 3-D modeling and inclusion of cell itself in the model are required

Reference

- [1] F Mugele and JC Baret, Electrowetting: from basics to applications, Journal of Physics:Condensed matter, R705 (2005).
 - [2] MG Pollack, A.D Shenderov, and R.B Fair, "Electrowetting based Actuation of Droplets for Integrated Microfluidics," Lab on a Chip, vol. 2, pp. 96-10 (2002).
 - [3] Y-H Chang, G-B Lee, F-C Huang, Y-Y Chen, J-L Lin, "Integrated polymerase chain reaction chips utilizing digital microfluidics," Biomed Microdevices, vol. 8, pp. 215–225 (2006)
- 4] V Srinivasan, VK Pamula, RB Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids," Lab Chip, vol. 4, pp. 310–315 (2004)..
- [5] J. Berthier, Microdropes and Digital Microfluidics, William Andrew Inc, Norwich, NY (2008).

Thank you