Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimizing the Performance of MEMS Electrostatic Comb-Drive Actuator with different Flexure Springs

S. Gupta[1], T. Pahwa[1], R. Bansal[1], V. Bansal[1], B. Prasad[1], D. Kumar[1]
[1]Electronic Science Department Kurukshetra University, Kurukshetra, Haryana

A new design of electrostatic comb drive actuator is presented in this paper by using different spring designs and with different folded beam lengths. An increased displacement of lateral comb drive actuator will subsequently be accomplished with the same actuation voltage. Stress distribution over different spring designs are simulated by COMSOL 3.5a using a standard comb drive with 4 movable ...

Multiphysics Simulations of Granular Sludge on the Optimization of Effluent Treatment Plant

S. Gunsekaran [1], R. C. Thiagarajan[1]
[1]ATOA Scientific Technologies Private Limited, Bangalore, India

Multiphysics Simulations of Physico-chemical and Biological Treatment of wastewater is increasing due to the demand for cost efficient plant design and utilization. Among the many processes, a thorough understanding of the settling behavior of an activated granular sludge in the secondary settler of an Effluent Treatment Plant (ETP) is critical for the plant designers to determine the efficiency ...

Simulation and Optimization of MEMS Piezoelectric Energy Harvester with a Non-traditional Geometry

S. Sunithamani[1], P. Lakshmi[1], E. E. Flora[1]
[1]Department of EEE, College of Engineering, Anna University, Chennai, India

Piezoelectric energy harvester converts mechanical vibrations into electrical energy via piezoelectric effect. The geometry of the piezoelectric cantilever beam greatly affects its vibration energy harvesting ability [1]. In this paper a MEMS based energy harvester with a non-traditional geometry is designed. The design of the energy harvester consists of a rectangular cantilever structure with ...

Coupled Electromagnetic and Heat Transfer Simulations for RF Applicator Design for Efficient Heating of Materials

C. Thiagarajan[1], J. Anto[2]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka India.
[2]Researcher

Conventional heating of material wastes energy during heating due to inherent radiation, conduction and convection based heating mechanism. Alternate efficient heating methods are actively researched for improved efficiency. Radio frequency based electromagnetic heating is increasingly used for efficient heating in place of conventional heating. This requires coupling of electromagnetic and heat ...

Modeling of Supercapacitor

G. Madabattula[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Low cost high energy density batteries that can be charged and discharged rapidly are required in a number of applications. Tapping energy from renewal resources such as solar, wind and tide requires rapidly generated energy to be first stored and then used round the clock. Storing energy of a moving vehicle as it slows down and recovering it to accelerate the vehicle later can significantly ...

Property and Performance Prediction of Meta Composites for Novel Applications

C. Thiagarajan[1]
[1]ATOA Scientific Technologies Private Limited, Whitefield, Bangalore 560066, India.

Metacomposites are new class of materials with unusual properties that can be engineered using existing materials with usual properties. The unusual properties of metacomposites are derived from the structure, analogues to atomic arrangement in crystal lattice. These material exhibits unusual negative refraction type behavior to electromagnetic wave propagation and thus enables novel ...

Studies of Lead Free Piezo-Electric Materials Based Ultrasonic MEMS Model for Bio sensor

P. Pattanaik[1], S. K. Kamilla[1], D. P. Das[2], S. K. Pradhan[3]
[1]MEMS Design Center, Institute of Technical Education & Research (ITER), Sikhya ‘O’ Anushandhan University, Bhubaneswar, Odisha, India
[2]Process Engineering and Instrumentation Lab, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, India
[3]Dept of ECE, Hi-Tech Institute of Technology, Khurda, Odisha, India

This paper describes the design of an ultrasonic transducer using different lead free piezo-electric materials and evaluates their performance with different glucose levels in the human blood. COMSOL Multiphysics 4.2a was used for the simulation study using 2D axis symmetric model of piezoelectric transducer which was designed with lead free piezoelectric materials such as Barium Sodium Niobate ...

Modelling and Simulation of Single Phase Fluid Flow and Heat Transfer in Packed Beds using COMSOL Multiphysics

S. Sachdev[1], S. Pareek[1], B. Mahadevan[1], A. Deshpande[1]
[1]Department of Chemical Engineering, BITS Pilani Goa Campus, Zuarinagar, Goa, India

Computational fluid dynamics has emerged as an advanced tool for studying detailed behavior of fluid flow and heat transfer characteristics in many chemical engineering applications like packed beds. Packed beds play an important role in various chemical industries. Hence understanding the fluid flow behavior and temperature variation in different sections of packed bed is essential. Geometric ...

Design and Simulation of MEMS based Thermally Actuated Positioning Systems

D. Mallick[1], P. K. Podder[1], A. Bhattacharyya[1]
[1]Institute of Radio Physics & Electronics, University of Calcutta, Kolkata, India

With continuous advancement in nanotechnology, requirement is rising for high precision motion controlled positioning system. Such system plays crucial role in the fabrication of micro and nano-sized objects and assemblies. They can be used for automated mask aligner, as biological sensors, in optical technology as deformable mirrors. Most significant requirements for the actuators in a ...

Optimizing the Design of Polymer based Unimorph Actuator using COMSOL Multiphysics

V. Tiwari[1], R. Sharma[1], G. Srivastava[1], R. Dwivedi[1]
[1]Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India

Cantilever beam-type transducers have been in great demand and explored widely in the recent years, typically in thin film form because of their sensor and actuator applications. The piezoelectric cantilever is the most preferred structure employed in technological applications. Depending on the required flexural motion and sensitivities, these piezoelectric cantilevers can be used in unimorph, ...

Quick Search