Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Residual Stresses in Arc Welding

F. Roger[1], and A. Traidia[2]
[1]ENSTA Paristech, Paris, France
[2]AREVA NP, Saint Marcel, France

The prediction of mechanical response of assemblies during arc welding necessitates the knowledge of thermal history of the components and the constitutive behavior of the materials. COMSOL can simulate thermal and structural interaction but it needs to evaluate the time evolution of internal variables like viscoplastic strain and hardening parameters. In the present paper we extend the ...

Flow Analysis and Optimization of a Hierarchical Plate Heat Exchanger for an Adsorption Heat Pump

E. Tempfli[1], F.P. Schmidt[1]
[1]Karlsruhe Institute of Technology (KIT), Fluid Machinery (FSM), Karlsruhe, Germany

The paper investigates the hydrodynamic performance of a hierarchical parallel channel network for the objective of optimal thermal coupling to heat released in the adsorption processes, as in adsorption heat pumps. More specifically, the uniformity of the fluid flow over the network is improved by optimizing the topology of the manifold channels of the two hierarchical levels. For this purpose a ...

Numerical Computation of Two-Phase Flow in Porous Media

D. Droste[1], F. Lindner[1], C. Mundt[1], M. Pfitzner[1]
[1]Universität der Bundeswehr, Munich, Bavaria, Germany

In this study we investigate the heat and mass transfer in a porous media with phase change. The liquid fluid is injected from one side and heated from the other side, where it leaves the porous material in a gaseous state. Dominant forces are capillary interactions and two-phase heat conduction. To model the process we use a two-phase mixture model on a macroscopic scale. This model is ...

Electromagnetic and Thermal Modeling of Vacuum Distillation Furnace

Asif Ahmad Bhat[1], D. Sujish[1], Sourabh Agarwal[1], B. Muralidharan[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Vacuum distillation furnaces (VDFs) are employed for purification and consolidation of heavy metals from their dendritic forms which are entrained with molten salts. The VDF is an induction heated furnace which is operated at a temperature of 700-1400 °C and at a pressure of 0.01-600 torr. To arrive at the adequate design of such type of furnace, magnetic field and temperature distribution need ...

Analysis of Burning Candle

J.S. Crompton, L.T. Gritter, S.Y. Yushanov, and K.C. Koppenhoefer
AltaSim Technologies LLC, Columbus, OH, USA

Analysis of burning candles is extremely complex; combustion produces a highly non-linear temperature profile through the flame in which local temperatures may exceed 1400 °C. Heat transfer includes radiation, conduction and convection components and the low melting point of the candle wax leads to a phase change that allows mass transport via capillary flow prior to combustion in the flame. ...

Thermal Analysis of Induction Furnace

A. A. Bhat[1], S. Agarwal [1], D. Sujish[1], B. Muralidharan[1], B. P. Reddy[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India

Induction furnaces are employed for vacuum distillation process to recover heavy metals after electro-refining operation. Induction furnace of suitable heating rate and cooled by passive means are required to be developed for this purpose. It is planned to set up a mock up induction furnace which will simulate the conditions to be realized in actual vacuum distillation furnace for this purpose. ...

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Numerical Simulation of Si Nanosecond Laser Annealing by COMSOL Multiphysics

M. Darif, and N. Semmar
GREMI-UMR6606, CNRS-Universite d’Orleans, Orléans, France

A 2D transient heat conduction model was created in COMSOL Multiphysics to simulate temperature changes in material irradiated by a KrF laser beam confined on silicon’s surface. In this paper, the obtained results are shown and discussed in case of bulk Silicon. The heat source is distributed in time with ‘gate’ and ‘gaussian’ shapes. The thermal properties values ...

Thermal Simulations of a LED Light Using COMSOL Multiphysics

M. Maaspuro[1]
[1]University of Turku, Turku, FInland

An experimental LED light composed of a multi-chip LED-module, a LED driver and an efficient heat sink, was investigated using COMSOL Multiphysics software and the Heat Transfer Module. In an LED light heat is mainly generated in the LEDs but some amount of heat is generated also in the LED driver. The main target of the simulations was to resolve the junction temperatures of LEDs, the most ...

Simulation of Exhaust Gas Heat Recovery System for an Automobile

Abhinav Prasad[1], David Neihguk[1], Anil Kumar Jaswal[1]
[1]Mahindra Research Valley, Mahindra World City, Chennai, Tamil Nadu, India

This paper presents the simulation of exhaust gas heat recovery system for an automobile using COMSOL Multiphysics®. A double pipe heat exchanger is modeled in which the tube side medium is the hot exhaust gas and the shell side medium is water. The problem is divided into three parts i.e. Laminar flow in water regime, Turbulent flow in exhaust gases and Heat Transfer in solids. They are solved ...

Quick Search

1 - 10 of 399 First | < Previous | Next > | Last