See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Heat Transfer and Phase Changex

Modelling of Thermal Stress in Yb:YAG to Quantify Depolarisation in a Nanosecond 10 J, 100 Hz Laser

G. Quinn1, M. De Vido1
1Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom

The high heat loads intrinsically associated with high-energy, high repetition rate laser systems require sophisticated thermal management analyses to minimise the impact of thermal effects on optical performance. Non-uniform heat deposition in optical elements can lead to the onset of ... Read More

Modeling and Multiphysics Simulation of the Directed Energy Deposition Additive Manufacturing

P. Ansari1, C.S. Tüfekci2, M. U. Salamci3
1Gazi University, Department of Mechanical Engineering, Additive Manufacturing Technologies Application and Research Center (EKTAM), Ankara, Türkiye
2Manufacturing Technologies Center of Excellence-URTEMM A.S., Ankara, Türkiye
3Gazi University, Department of Mechanical Engineering, Additive Manufacturing Technologies Application and Research Center (EKTAM), Manufacturing Technologies Center of Excellence-URTEMM A.S., Ankara, Türkiye

In this paper, we present a study of the simulation of Directed Energy Deposition (DED) Additive Manufacturing (AM) using a multiphysics approach. We use a combination of Heat Transfer in Fluids, Solid Mechanics and Laminar Flow physics to accurately simulate the DED process. The ... Read More

Thermal Battery Simulation Models: Evaluating Levels of Abstraction and Geometric Resolution

Christopher Schoß1, Niklas Drope1, Dr. Christoph Weissinger1
1Capgemini Engineering, München, Germany

The accurate modeling and simulation of battery cells are crucial for the optimization and design of efficient energy storage systems. The choice of an appropriate battery simulation model heavily depends on the specific problem being investigated. This poster presents a comparative ... Read More

Modelling the Composition Gradient in Ni-Mn-Ga Single Crystal Grown by Floating Zone Method

Denys Musiienko1, Ross H. Colman2
1Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
2Charles University, Prague, Czech Republic

Re-crystallisation of Ni-Mn-Ga Heusler alloys in a floating zone (FZ) optical furnace is a complex problem that depends not only on the compositions of the master alloy and a seed crystal but on the growth speed and evolution of the molten zone shape during the crystal growth process. We ... Read More

Methanation in Catalytic Reactor

M. Schopfer1, C. Nkoumou1, D. Martinet1, C. Ellert1
1University of Applied Sciences Western Switzerland (HES-SO Valais-Wallis), Sion, Valais, Switzerland

Power-to-gas is an important area of research for reducing greenhouse gases and seasonal energy storage. Methane, with a Lower Heating Value of 50 MJ/kg, is already a commonly used gas, and its synthesis using green hydrogen production (electrolysis of renewable energy) is a remarkable ... Read More

Modeling of Iron Ore Reduction Above the Cohesive Zone of the Blast Furnace

Yalçın Kaymak1, Hauke Bartusch1, Thorsten Hauck1
1VDEh Betriebsforschungsinstitut GmbH, Düsseldorf, NRW, Germany

The blast furnace shaft is a huge counter flow reactor in which heat and mass exchange play a significant role in its mathematical modelling. The heat exchange model is already available in COMSOL Multiphysics® via the Local Thermal Non-Equilibrium interface. This multiphysics coupling ... Read More

Degassing of PP Pellets in a Silo: Keeping C9 Concentrations Below the Lower Explosion Limit

R. Wesselink1
1Demcon Multiphysics, Enschede, The Netherlands

When polypropylene (PP) is produced it contains impurities in the form of dissolved gasses. These gasses can be removed by heating the material (in the form of pellets in a silo) and flushing with plenty of fresh air. However, one of the gasses is C9, which is flammable. We built a model ... Read More

Monte Carlo Simulation to Model Natural Variability in Food Drying

Jörg Schemminger1, Thijs Defraeye2, Sharvari Raut3, Barbara Sturm4
1Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland / Humboldt-Universität zu Berlin, Faculty of Life Sciences, Albrecht Daniel Thae
2Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland / Food Quality and Design, Wageningen University & Research, P.O. Box 17, 6700 A
3Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany
4Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany / Humboldt-Universität zu Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Hinter der Rei

Convective drying of fruits and vegetables is a widely used preservation method and serves to reduce food waste, to make them available off-season and to reduce weight-related transport costs. However, the high energy consumption and impact of the process set-up and process settings on ... Read More

Indoor Thermal Analysis of a Storehouse

R. Sinatra1, S. Cagliari1, A. Barbagallo1, G. Petrone1
1BE CAE & Test S.r.l., Viale Africa 170 - Sc.A, 95129, Catania, ITALY

The aim of this study is to evaluate the airflow thermal distribution inside a storehouse in different operational conditions. A warehouse of 12,600 m3 in volume is considered for fluid-dynamical and thermal analysis. Coupled Navier-Stokes and energy equations are solved considering or ... Read More

A Framework for Automated, Data-Driven Digital Twin Generation from Multiphysical Simulation Models

Maximilian Kannapinn1, Oliver Weeger1
1Technical University of Darmstadt, Cyber-Physical Simulation, Darmstadt, Germany

A digital twin is a virtual set of information replicating its physical counterpart at the utmost fidelity. Digital and physical twin benefit from bi-directional data exchange that occurs in real time and over the whole process lifecycle. Until now, experts in the design phase have ... Read More