See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Heat Transfer and Phase Changex

Thermo-Mechanical Analysis of Composite Material Exposed to Fire

A. Davidy[1]
[1]IMI, Ramat Hasharon, Israel

This paper presents thermo-mechanical models for predicting the strength of polymer laminates loaded in tension or compression exposed to one-sided radiant heating by fire. The first part is the fire simulation where the FDS model is utilized. The FDS model generates a solution of ... Read More

Modeling of Atmosphere Revitalization

R. Coker[1], J. Knox[1], K. Kittredge[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

All spacecraft systems must be minimized with respect to mass, power, and volume. Here, we focus on current efforts to improve system efficiency and reliability for water separation systems to be used on crewed vehicles. These development efforts combine sub-scale systems testing and ... Read More

Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor Using COMSOL

J.D. Freels[1], P.K. Jain[1], R.W. Hobbs[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA

The Oak Ridge National Laboratory (ORNL) is developing technology to re-establish the capability to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space. The High Flux Isotope Reactor ... Read More

Early Stage Melt Ejection in Laser Percussion Drilling

T. Eppes[1]
[1]University of Hartford, Hartford, CT, USA

Laser percussion drilling is widely used in the aerospace industry to produce cooling holes in jet engine components. This process is a thermal, contact-free process which involves firing a sequence of focused optical pulses onto a target material [1-4]. During each optical pulse, the ... Read More

Natural Convection Driven Melting of Phase Change Material: Comparison of Two Methods

D. Groulx[1], F. Samara[1], P.H. Biwole[2]
[1]Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada
[2]Department of Mathematics and Interactions, University of Nice Sophia-Antipolis, Nice, France

Design of latent heat energy storage systems (LHESS) requires knowledge of heat transfer processes within them, as well as the phase change behavior of the phase change material (PCM) use. COMSOL Multiphysics can be used to model (LHESS). Natural convection plays a crucial role during ... Read More

Thermo-Fluid Dynamics of Flue Gas in Heat Accumulation Stoves: Study Cases

D. Rossi[1], P. Scotton[1]
[1]University of Padova, Department of Geosciences, Padova, Italy

The research aims to clarify some aspects of the thermo-fluid dynamics of woody biomass flue gas, within the twisted conduit inside the heat accumulation stoves, and exposes also some analysis about the heat transport and heat exchange processes. The high temperature flue gas flows in ... Read More

Modeling a Combined Photovoltaic-Thermal Panel

E. Gutierrez-Miravete[1], B. Fontenault[2]
[1]Rensselaer Polytechnic Institute, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

A novel combined photovoltaic-thermal panel can simultaneously increase the conversion efficiency of the PV cell and utilize some of the excess thermal energy created by the conversion process (see Figure 1). The Conjugate Heat Transfer physics in COMSOL was used to create a two ... Read More

Analysis of Superheater Tubes with Mutual Irradiation as Applied to a Solar Receiver Steam Generator

N. Lemcoff[1], S. Wyatt[2]
[1]Rensselaer Polytechnic Institute, Hartford, CT, USA
[2]Alstom Power, Windsor, CT, USA

The objective of this paper is to analyze the temperature variations within a superheater tube of a solar receiver steam generator. The tube is heated by concentrated, collimated solar irradiation with major cooling by an internal steam flow. The influence of heat loss by radiation, ... Read More

COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL’s High Flux Isotope Reactor

P.K. Jain[1], V.B. Khane[2], J.D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]Missouri University of Science and Technology, Rolla, MO, USA

Simulation models for steady state thermal hydraulics analyses of ORNL’s HFIR have been developed using COMSOL. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions. The standard k-? turbulence model was used in simulating turbulent ... Read More

Numerical Simulation Study on the Heat and Mass Transfer Through Multi-Layer Textile Assemblies

S.F. Neves[1], J.J.B.L.M. Campos[1], T.S. Mayor[2]
[1]CEFT – Transport Phenomena Research Center, Chemical Engineering Department, Porto University, Porto, Portugal
[2]CeNTI - Centre for Nanotechology and Smart Materials, Rua Fernando Mesquita, Vila Nova de Famalicão, Portugal

A clothing system should offer the user a period of relatively comfort. However, changes in the ambient conditions over day affect the heat and mass transport in the system, influencing the user comfort perception. In order to gather information to allow the optimization of clothing ... Read More