Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Nanoscale Heat Flow

S. Palaich, and B. Daly
Physics and Astronomy Department, Vassar College, Poughkeepsie, NY, USA

When the dimensions of the material approach is a comparable size to the phonon mean free path, heat flow enters a new regime, the nanoscale. The Fourier and Cattaneo Equations describe bulk heat flow well, but radiative boundary terms must be considered when modeling nanoscale heat flow. We take these equations and input them into COMSOL with the hope of eventually linking nanoscale and bulk ...

Effect of Local Deformation on the Emission Energy of  Quantum Dots in a Flexible Tube

S. Kiravittaya[1], P. Cendula[2], A. Rastelli[2], and O. Schmidt[2]
[1]Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
[2]Institute for Integrative Nanosciences, Dresden, Germany

Strain induced by local deformation of a flexible micrometer-sized semiconductor tube is quantified by modeling a ball pressing on the tube wall. By changing the pressing condition, we are able to change the strain state of the tube wall incorporating self-assembled quantum dots (QDs) in the wall. The QD emission energy is calculated in COMSOL® by solving the Schrödinger wave equation ...

Stress State Determination in Nanoelectronic Silicon Devices Coupling COMSOL Multiphysics and a Recursive Dynamical CBED Pattern Simulation

A. Spessot[1,2], S. Frabboni[1], A. Armigliato[3], and R. Balboni[3]
[1]Numonyx Advanced R&D NVMTD-FTM, Agrate Brianza, Italy
[2]National Research Center S3, CNR-INFM and Department of Physics, University of Modena e Reggio Emilia, Modena, Italy
[3]CNR-IMM Section of Bologna, Italy

Strained technology is being promoted as the best way to extend the performance of semiconductor transistors. An inhomogeneous layer deposited on top of a silicon device can induce a strong modification in the real silicon strain state, and consequently in its electronic performance. Coupling the finite elements analysis done by COMSOL with a recursive CBED and LACBED dynamical simulation, we are ...

Steady-state simulation of mono-valent ion distributions within a nanofluidic channel

W. Booth[1], J. Schiffbauer[1], J. Fernandez[2], K. Kelley[3], A. Timperman[3], and B. Edwards[1]

[1]Physics Department, West Virginia University, Morgantown, WV, USA
[2]Chemical Engineering Department, West Virginia University, Morgantown, WV, USA
[3]Chemistry Department, West Virginia University, Morgantown, WV, USA

The steady-state non-equilibrium distributions of two species of mono-valent ions around a charged nanofluidic channel have been examined. Large reservoirs were placed on either side of the nanoscale channel to simulate bulk concentration of ions in a fluid. Results from COMSOL Multiphysics simulations show that the effect of the potential bias across the nanochannel yields a significant ...

Analyzing the Performance of Lined and Unlined Simplified Cylindrical Cloaks

J. McGuirk and P. Collins
Air Force Institute of Technology, WPAFB, OH, USA

The performance of simplified cylindrical cloaks with various material parameters was investigated. The performance metric was the overall scattering width of the cloak with various objects in the hidden region. COMSOL was used to simulate three cloaks with different material parameters to determine the total field in the simulation domain. For all cloaks simulated in this effort, a PEC-lined ...

Finite Element Analysis of Multiconductor Interconnects in Multilayered Dielectric Media

S. Musa and M. Sadiku
College of Engineering, Prairie View A&M University, Prairie View, TX, USA

Due to the complexity of electromagnetic modeling, researchers and scientists always look for development of accurate and fast methods to extract the parameters of electronic interconnects and package structures. In this paper, we illustrate modeling of multiconductor interconnects in multilayered dielectric media using COMSOL Multiphysics and the finite element method. We specifically determine ...

Windows HPC Server 2008 R2 Goals and Overview

V.M. Srinivas
Technical Computing, Microsoft Corporation, India

A Mechanical Engineer from Madras University and an MBA from Symbiois Pune, Vinoo has been working in the Indian Enterprise and Technical Computing space for more than 10 years. He has been consulting customers for their Technical and High Performance Computing needs for the past 5 years. He has been involved in architecting some of the large HPC clusters in the country across Fundamental ...

Acoustic streaming flows in discharge lighting

T. Dreeben
Osram Sylvania, Beverly, MA, USA

Thomas Dreeben received his B.A. in Philosophy and Mathematics in 1985, and his Ph.D. in Mechanical Engineering in 1997, both from Cornell University. He has worked in automotive fuel systems at Ford Motor Company, and in turbulence at Sandia National Laboratories. He currently works in lighting research at OSRAM SYLVANIA, where his modeling focuses on fluid mechanics and heat transfer as they ...

Numerical Simulation of a Building Envelope with High Performance Materials

M.H. Baghban[1], P. Jostein Hovde[1], and A. Gustavsen[2]
[1]Civil and Transport Engineering Department, Norwegian University of Science and Technology, Trondheim, Norway
[2]Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Trondheim, Norway

Simulation tools for building physics problems play an important role in design and understanding the behavior of energy efficient buildings. There are different tools available for simulation of these problems, but each simulation tool has its own advantages and limitations. In this paper, a heat transfer problem in an exterior building wall with high performance materials has been simulated in ...

Modelling Electric Fields in High Voltage Submersible Changeover Switch

K. Follesø
Bennex AS, Bergen, Norway

Controlling electric field distribution in high voltage components is critical to avoid excessive electric stress on the insulation and thus reducing the risk of insulation breakdown and damage to equipment. For subsea applications this is even more important due to the costs involved in accessing and replacing the damaged parts. This paper describes how COMSOL Multiphysics has been used for ...

Quick Search

2741 - 2750 of 3228 First | < Previous | Next > | Last