Analyze the Electrodynamics of a Magnetic Power Switch via Simulation

Caty Fairclough September 21, 2017

Have you ever plugged one too many devices into an electrical circuit? This can overload the circuit and damage its components. To avoid this issue, many homes have devices like electric switch circuit breakers to interrupt the current when a critical current is reached. Other types of circuit breakers are used to prevent issues in high-voltage situations, like citywide power lines. In this blog post, we discuss using simulation to study a class of heavy-duty circuit breakers: magnetic power switches.

Read More

Categories

Hanna Gothäll September 20, 2017

Irregular shapes can come in several different formats. For example, we have previously discussed importing STL files and NASTRAN® meshes into the COMSOL Multiphysics® software. These formats are common when working with scanned biological data. In this blog series, we will look at different ways of handling irregular shapes in COMSOL Multiphysics.

Read More

Uttam Pal September 19, 2017

In 1870, an audience watched as a stage was set with two buckets, one on top of the other. Due to a small hole in the upper bucket, water poured into the lower bucket, bending as it did so. To the audience’s amazement, sunlight followed the bend of water — a phenomenon later termed total internal reflection. The performer on stage, John Tyndall, was one of the many scientists who tried to control the most visible form of energy: light.

Read More

Categories

Bridget Paulus September 18, 2017

Maintaining an even temperature for buildings in hot climates often requires a lot of energy. One option for improving thermal performance is by including phase change materials (PCMs) in parts of the building. To study the effectiveness of PCMs in regulating temperature, researchers used the COMSOL Multiphysics® software to model a novel plaster that includes a PCM. They then analyzed the thermal performance of the PCM-enhanced plaster and compared the results with a reference plaster.

Read More

Aditi Karandikar September 15, 2017

Sir Mokshagundam Visvesvaraya (also known as Sir M.V.) was perhaps the most influential engineer in the history of contemporary India. A scholar and statesman, he served as the diwan of Mysore and was instrumental in the development of the princely state. Visvesvaraya was knighted as a knight commander of the British Indian Empire to honor his contributions to society. To celebrate the anniversary of his birthday, let’s take a look at some of Sir Mokshagundam Visvesvaraya’s major accomplishments.

Read More

Categories

Guest Linus Fagerberg September 14, 2017

Guest blogger Linus Fagerberg from Lightness by Design returns to share a novel approach for predicting external noise generation in muffler designs. In recent years, the European Union has introduced stricter noise emission limits for road vehicles. For those designing mufflers, these limits make it important to create more efficient ways of developing and assessing the performance of their designs. At Lightness by Design, we’ve developed a novel approach that accomplishes this goal.

Read More

Caty Fairclough September 12, 2017

When thinking about natural selection, antennas are probably not the first thing that comes to mind. But with genetic algorithms, we can use the basic principles of natural selection to solve antenna optimization problems. For example, genetic algorithms enabled one research group to optimize the geometry of an optical antenna. They implemented their study by using LiveLink™ for MATLAB®, an add-on product to the COMSOL Multiphysics® software.

Read More

Caty Fairclough September 8, 2017

Generating complex emulsion droplets that can be used to fabricate highly compartmentalized microconstructs is difficult to achieve with classic droplet-forming fluidic junctions. These junctions have simple geometries, which can result in a narrow range of flow rate control. To address this issue, one research group designed an oscillatory microfluidic junction with a more complicated geometry. This junction, called the bat-wing junction, can consistently produce uniform and complex double-emulsion droplets, with bespoke components and encapsulated reagents.

Read More

Categories

Lauren Sansone September 7, 2017

Every year, thousands of engineers and scientists convene at the COMSOL Conference. The event is an opportunity to hear product news, learn modeling practices, and discuss design challenges. You can also give us product feedback to help shape the future of the COMSOL® software. This blog post is your complete guide to what you can expect as an attendee of the COMSOL Conference 2017.

Read More

Categories

Phillip Oberdorfer September 6, 2017

When simulating heat transfer in fluids with forced convection, we can often neglect the influence of temperature variations on the flow field unless the requirements on accuracy are very high. Computing the flow field independently might substantially decrease the computational cost with a negligible impact on accuracy in the solution. In this blog post, we demonstrate the advantages of using a one-way coupling in the COMSOL Multiphysics® software with a nonisothermal flow example.

Read More

Categories

Edmund Dickinson September 5, 2017

Precision machining and quality of surface finish are major concerns for manufacturers of metal parts. The promise of a contactless method to machine surfaces with submillimeter precision and a clean surface, on metals of almost any hardness, might seem too good to be true. However, such a method, pulsed electrochemical machining (PECM), was the focus of a detailed investigation using numerical modeling presented at the COMSOL Conference 2016 Munich.

Read More


Categories


Tags

1 2 3 125