Predicting the Sound Emission of a Muffler Design via Simulation

Guest Linus Fagerberg September 14, 2017

Guest blogger Linus Fagerberg from Lightness by Design returns to share a novel approach for predicting external noise generation in muffler designs. In recent years, the European Union has introduced stricter noise emission limits for road vehicles. For those designing mufflers, these limits make it important to create more efficient ways of developing and assessing the performance of their designs. At Lightness by Design, we’ve developed a novel approach that accomplishes this goal.

Read More

Guest Thomas Clavet August 31, 2017

Today, guest blogger Thomas Clavet of EMC3 Consulting, a COMSOL Certified Consultant, discusses simulating phased array and geometrically focused probes. Ultrasound focusing is widely used in various industrial applications, such as nondestructive testing (NDT) and medical imaging. For clinical applications, high-intensity focused ultrasound (HIFU) is a specific aspect of this technology where most of the power provided by the probe is carried to a targeted zone to coagulate biological tissues. This blog post discusses ultrasound focusing simulation.

Read More

Brianne Costa August 25, 2017

A leading cause of smog and particulate pollution is the harmful emissions from automobiles, especially those that run on diesel engines. Today, most vehicles with diesel engines are required to install a diesel particulate filter (DPF) to catch carbon-based particulates that are emitted from their exhaust. Using the COMSOL Multiphysics® software, we can analyze the acoustics of a DPF.

Read More

Categories

Caty Fairclough July 31, 2017

One application of acoustic streaming (AS), the process of using sound waves to generate steady fluid motion, is adjusting grain morphology during the metal solidification process. Since ensuring the best product possible is key, engineers in the metal processing industry must improve AS, which can require costly field tests and test rigs. To see if simulation can be used to reduce this need, researchers analyzed AS treatment with the COMSOL Multiphysics® software.

Read More

Mads Herring Jensen July 25, 2017

Detailed modeling of the complex interaction of flow and acoustics is achieved in the COMSOL Multiphysics® software and add-on Acoustics Module using the linearized Navier-Stokes interfaces. With the release of version 5.3, the capabilities were further extended with the addition of a new stabilization scheme. This allows robust simulations of systems with acoustic properties that are modified by or depend on a turbulent background flow; e.g., automotive exhaust systems. Here, we introduce important modeling concepts and present application examples.

Read More

Bridget Cunningham July 10, 2017

Of the 72 million potential hearing aid users around the world, each needs a device fitted to meet their needs. In-the-ear measurements are performed to ensure both comfort and effectiveness. These measurements require the use of a microphone — the size of which can cause issues. The device can be too large to fit into the measured sound field. Alternatively, it can be too big compared to the wavelength and disturb the acoustic field. One solution is a probe tube…

Read More

Pawan Soami May 23, 2017

Gears are used in a variety of applications, such as clocks, industrial machinery, music boxes, bicycles, and automobiles. A gearbox is a major source of vibration and noise irrespective of how it is used. The most effective approach to reduce the noise radiation from a gearbox is to perform a vibroacoustic analysis to improve the design. Let’s see how the COMSOL Multiphysics® software can be used to help build quieter transmission systems.

Read More

Caty Fairclough March 17, 2017

When simulating hearing aids, it’s important to determine how transducers interact with the rest of the system. In some cases, these studies require fully detailed models, increasing their computational cost. One alternative is coupling a lumped parameter transducer model with a multiphysics model representing the whole system. In this blog post, we discuss the example of a Knowles ED-23146 receiver (or miniature loudspeaker) that is connected to a test setup and compare the results to measurement data.

Read More

Categories

Mads Herring Jensen January 26, 2017

Modeling acoustically large problems requires a memory-efficient approach like the discontinuous Galerkin method. To make solving these types of problems easier, we’ve added a new physics interface based on this method to the Acoustics Module: the Convected Wave Equation, Time Explicit interface. It can include a stationary background flow and is suited for modeling linear ultrasound applications. Today, we will explore how to use this interface with the example of an ultrasound flow meter.

Read More

Categories

Caty Fairclough January 19, 2017

For those looking to solve complex transport process problems involving photonics and microfluidics, it can be challenging to account for all of the elements involved, including multiple physics phenomena. However, this is necessary for accurate results. By using multiphysics simulation, Carl Meinhart from the University of California, Santa Barbara and Numerical Design, Inc. accurately modeled transport processes in two application areas: high-frequency acoustics and microfluidic valves. Watch his keynote talk from the COMSOL Conference 2016 Boston to get the details.

Read More

Bridget Paulus January 16, 2017

When a pipe springs a leak, it’s important to find its location with a quick and accurate method. Engineers at Echologics — a Mueller Technologies Company — use a combination of acoustic sensors and simulation applications to pinpoint such leaks. Sebastien Perrier of Echologics discussed the benefits of this approach and gave a live demonstration of an acoustics modeling app during his keynote talk at the COMSOL Conference 2016 Boston. If you missed Sebastien’s presentation, you can watch it below.

Read More


Categories


Tags

1 2 3 6