Caty Fairclough | March 25, 2015

The Vivaldi antenna, also known as the tapered slot antenna (TSA), is an ideal antenna for wide-band applications. It stands out due to its uncomplicated structure, simple manufacturing requirements, and high gain. When working on a Vivaldi antenna design, we can use simulation software to evaluate its far-field pattern and impedance.

Read more ⇢

Article Categories

Bridget Cunningham | March 20, 2015

COMSOL Multiphysics version 5.0 introduced users to a new background field feature designed for linearly polarized plane waves. Explore the use of this new feature with an example of polarization-dependent scattering from our Model Gallery.

Read more ⇢

Article Categories

Walter Frei | March 9, 2015

When using the COMSOL Multiphysics software to simulate wave electromagnetics problems in the frequency domain, there are several options for modeling boundaries through which a propagating electromagnetic wave will pass without reflection. Here, we will look at the Lumped Port boundary condition available in the RF Module and the Port boundary condition, which is available in both the RF Module and the Wave Optics Module.

Read more ⇢

Article Categories

Bridget Cunningham | March 5, 2015

COMSOL Multiphysics version 5.0 introduced users to an improved “Numeric TEM port” feature for transmission lines. This feature includes enhanced functionality, utilizing the techniques behind the calculation of impedance in 2D models and applying them in 3D instances.

Read more ⇢

Article Categories

Bridget Cunningham | February 4, 2015

When undergoing testing for electromagnetic compatibility compliance, many products rely on biconical antennas. In order to help with this testing, it is important that these antennas possess broadband characteristics. We explore how simulation can help you ensure this.

Read more ⇢

Article Categories

Bjorn Sjodin | January 5, 2015

In 1977, the axion, a type of elementary particle, was suggested as a solution to a theoretical particle physics problem: the strong charge-parity (CP) problem. Later, it was discovered that the particle may actually be a component of dark matter. Many experiments are currently underway that have the goal of detecting axions. In this blog post, we’ll focus on the Axion Dark Matter eXperiment (ADMX), which uses a microwave cavity in an attempt to accomplish this goal.

Read more ⇢

Article Categories

Fanny Littmarck | September 4, 2014

We’ve blogged about how you can save time setting up your electromagnetic models by using symmetry, anti-symmetry, and periodic boundary conditions. Today, we’ll show you a model that takes advantage of axisymmetry — a conical horn antenna model.

Read more ⇢

Article Categories

Mark Fowler | August 6, 2014

Last month, my colleague Alexandra Foley introduced an RF modeling example that uses periodic boundary conditions. Another RF model that can be created with ease by taking advantage of periodic boundary conditions is the Frequency Selective Surface, Periodic Complementary Split Ring Resonator model.

Read more ⇢

Article Categories

Alexandra Foley | July 9, 2014

There are two types of anechoic chambers — acoustic and radio frequency (RF). Here, we explore how periodic structures can be used to help quickly model an RF anechoic chamber by reducing the complexity and computation time of the model.

Read more ⇢

Article Categories

Jennifer Segui | June 19, 2014

It’s likely that you’ve heard or read about many of the exciting discoveries in particle physics research at Fermilab. Powerful particle accelerators, including the Booster synchrotron with its unique ferrite-tuned RF cavities, consistently bring the lab to the forefront of discovery. Upgrading the 40-year-old Booster RF cavities will enable them to produce and sustain particle beams at even higher intensities… but will they overheat? Learn how the engineers at Fermilab address this important design challenge.

Read more ⇢

Article Categories

Fanny Littmarck | May 20, 2014

We like to feature a certain waveguide model in our RF and microwave heating webinars because it illustrates the concept in a way that is easy to understand. Here it is again, serving as a quick intro to modeling RF and microwave heating.

Read more ⇢

Article Categories

1 2 3 4