Using the Application Builder as a Tool for Teaching Students

Nandita Roche | May 19, 2016

Maximizing the efficiency of the learning process, while keeping students engaged — this is the common goal that professors hope to achieve in any course. In the realm of physics- and engineering-based courses, simulation apps are helping to strike such a balance by introducing students to complex concepts in a simplified format. Here, we’ll take a look at some of the innovative ways that university professors are utilizing apps within the classroom.


Aditi Karandikar | May 11, 2016

Lasers, focused beams of photons of a single wavelength, find use in a wide variety of applications today — from noninvasive surgeries and fiber optic communication to material processing and even DVD players. Let’s see how a research team from Lawrence Livermore National Laboratory (LLNL) used the power of multiphysics simulation to investigate laser-material interaction to avoid the damage of optics internal to high-power laser systems.


Mehrzad Tabatabaian | February 29, 2016

Continuing his discussion of simulation apps, guest blogger Mehrzad Tabatabaian presents an app that he designed to study transient heat transfer in a nonprismatic fin. In earlier blog post, I spoke about my new book, COMSOL5 for Engineers, a resource designed to inspire and guide the creation of COMSOL models and simulation apps. Today, I’ll share a model with you that I created to analyze transient heat transfer in a fin as well as its corresponding app.


Lexi Carver | December 28, 2015

Corrosion is one of the most serious factors affecting the transportation industry. In an effort to minimize its impact, a German research institute and the manufacturers of Mercedes-Benz joined forces to investigate the corrosion occurring in automotive rivets and sheet metal. Using COMSOL Multiphysics simulation, they were able to study corrosion’s effects on car components.


Bridget Cunningham | December 14, 2015

The demand for better performance and increased accuracy in touchscreen devices is growing. Simulation, a fast and cost-effective approach to product development, helps to meet this goal. With each design modification, colleagues will typically rely on you to run simulation tests, awaiting your feedback before reaching out to customers. As researchers at Parade Technologies (formerly Cypress Semiconductor) have discovered, creating apps and distributing them to colleagues is a valuable way to save time and more effectively communicate with customers.


Lars Fromme | November 6, 2015

Today, we welcome Lars Fromme back to the blog — this time as a guest blogger from the FH Bielefeld University of Applied Sciences. Working with loud machines is an occupational safety issue in the modern world. To keep workers safe, we can design low-cost solutions to control the noise with the help of simulation. Researchers at the FH Bielefeld University of Applied Sciences set out to do just that by simulating acoustic transfer paths with COMSOL Multiphysics simulation software.


Caty Fairclough | March 31, 2016

Two professional chefs stand in a classroom, closely observing a soft-boiled egg. What may initially sound like a cooking class is actually part of a physics course offered at the Technische Universiteit Eindhoven (TU/e) in the Netherlands. Using COMSOL Multiphysics, students are investigating the science behind cooking the perfect soft-boiled egg. See how this innovative blend of simulation research and food science is teaching students how to build and test models.


Caty Fairclough | February 16, 2016

By design, façades are meant to be visually appealing. Aesthetics, however, aren’t the only concern. It is also important to consider elements such as stability, efficiency, and comfort. Engineers at Newtecnic use COMSOL Multiphysics to strike this balance, creating façades that are both eye‐catching and functional.


Aditi Karandikar | December 23, 2015

3D printing, also known as additive manufacturing, has been a popular topic of discussion on the COMSOL Blog and throughout the scientific community. New initiatives have furthered the capabilities of this technology, while extending its reach in various fields of research, manufacturing, and design. With the help of COMSOL Multiphysics, researchers at the Netherlands Organization for Applied Scientific Research (TNO) are investigating the promise of 3D printing in the realm of material design.


Bernd Baumann | November 11, 2015

Today, we introduce guest blogger Bernd Baumann, who shares insight into optimizing the performance of metal-halide lamps with simulation, with input from his colleague Joerg Schwieger. With the help of COMSOL Multiphysics, we investigated the impact of acoustic resonances and the related acoustic streaming field on the operation of metal-halide discharge lamps. To our surprise, we found that the lamps exhibit behaviors that are similar to a well-known mechanical system — the forced Duffing oscillator with a softening spring.


Bridget Cunningham | November 3, 2015

Silicon chips have been the foundation of power electronics over the years. However, as more applications are using increasingly higher amounts of electrical power, silicon has begun to reach its limits. Wide band gap semiconductors offer an opportunity to surpass these confines, operating at high frequencies, voltages, and temperatures. Looking to optimize their development of wide band gap solutions, engineers at Wolfspeed utilized the power of the Application Builder within COMSOL Multiphysics.


1 2 3 10