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Abstract AC electroosmotic micropumps are suggested to

be powerful tools for electrolyte dosing in various micro-

and nanofluidic systems. In this paper, we compare two

modeling approaches for studying the AC electroosmosis in

the following micro and nanochannel systems: (i) a travel-

ing-wave AC pump with a spatially continuous wave of

electric potential applied on a planar boundary, (ii) a trav-

eling-wave AC pump with a wave of electric potential

applied on a set of discrete planar electrodes, and (iii) an AC

pump with a set of non-planar electrodes. The equilibrium

approach is based on the use of capacitor–resistor boundary

conditions for electric potential and the slip boundary con-

ditions for velocity at electrode surfaces. The non-equilib-

rium approach uses the mathematical model based on the

Poisson equation and the non-slip boundary conditions. We

have observed discrepancies between the predictions given

by the both models and then we have identified their possible

reasons. The comparison of the equilibrium and non-equi-

librium results further showed three important actualities:

(a) how the equilibrium model overestimates or underesti-

mates the net velocity, (b) how the velocity maxima in the

frequency characteristics can be shifted, if the equilibrium

model assumptions are not satisfied, (c) the parametric

region where the equilibrium model is applicable. Because

the data are obtained in a dimensionless form, they can be

exploited for AC electroosmotic studies. We discuss the

limitations of the equilibrium and non-equilibrium models

and compare selected predictions with available experi-

mental data.
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List of symbols

A Amplitude (V)

c Concentration (mol m-3)

CD Capacitance of EDL (F m-2) CD ¼ e=kD

D Diffusivity (2 9 10-9 m2 s-1)

f Frequency (s-1)

F The Faraday constant (96,485 C mol-1)

g Gap width (m) g = xm?1
L -xm

R

h Electrode height (m)

H Height of a periodic segment (m)

J Ion flux intensity (mol m-2s-1)

k Wave number (m-1) k = 2p/L

L Length of a periodic segment (m)

Le Electrode width (m) Le = xm
R - xm

L

n Number of electrodes

nFx Number of finite elements in the x-direction

nFy Number of finite elements in the y-direction

n Normal unit vector

p Pressure (Pa)

q Electric charge density (C m-3)

R Molar gas constant (8.314 J K-1mol-1)

t Time (s)

t Tangential unit vector

T Temperature (298.15 K)

Tt Period of the electric signal (s) Tt = f-1

v Horizontal component of velocity (m s-1)

hv i Net velocity (m s-1)

v Velocity (m s-1)

w Electric potential wave velocity (m s-1)

w = L/Tt = x/k
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x Spatial coordinate (m)

y Spatial coordinate (m)

Greek symbols

a Phase of an AC signal

e Electrolyte permitivity (6.9503 9 10-10 F m-1)

u Electric potential (V)

g Dynamic viscosity (0.001 Pa s)

kD The Debye length (m) k2
D ¼ eD

r
w Complex electric potential (V)

q Density (1,000 kg m-3)

r Specific conductivity (S m-1) r ¼ 2c�D
F2

RT

x Angular frequency (s-1) x = 2 pf

Dimensionless criteria

Ra The Rayleigh number Ra ¼ e
gD

RT
F

� �2¼ 0:2294

Sc The Schmidt number Sc ¼ g
qD ¼ 500

~kD EDL simplex ~kD ¼ kD=L

Superscripts

* Complex conjugate

* Dimensionless

^ Time averaged

? Cation

- Anion

± Either ? or -

e Electrode

L Left boundary of the electrode

R Right boundary of the electrode

C Center of the electrode

Subscripts

o Characteristic value

m Index of electrode

slip At the slip plane

1 Introduction

Ramos et al. studied the effects of a low amplitude AC

electric field imposed on co-planar electrodes in a micro-

channel filled by aqueous electrolytes [1]. They observed

the electrokinetic transport of a new kind above the

microelectrodes for frequencies up to 500 kHz. In 2000,

Ajdari proposed a design of AC electrokinetic micropumps

based on arrays of asymmetric pairs of co-planar micro-

electrodes [2]. It was expected that the asymmetry will lead

to a net flow of electrolytes. His predictions were verified

by several experimental and theoretical works, e.g., [3–7].

In general, the authors used microelectrodes with charac-

teristic dimensions from micrometers to tens of micro-

meters. The observed net flow velocity typically attained

few hundreds of microns per second.

The AC electroosmotic flow is based on the same

principles as the DC electroosmosis [8], i.e., on existence

of the tangential coulombic force at a polarized solid phase.

For example in the co-planar AC electroosmotic micro-

pumps, the imposed electric field has the tangential and

the normal components. The normal component induces

the electrode polarization (capacitive charging). Then, the

lateral component of the electric field forces the amassed

electric charge to move along the electrodes. The most

intensive tangential coulombic force was predicted and

observed at electrode edges [9]. As the electric charge is

formed by ions of a non-zero diameter, the moving ionic

particles pull a surrounding liquid via the viscous forces.

Combination of the coulombic, pressure and viscous forces

in the liquid results in the formation of eddies above the

electrodes that were experimentally observed by PIV

techniques [4, 5]. The system asymmetry leads to an

asymmetry of the eddies and to a non-zero net velocity.

We can recognize at least three different types of the AC

electroosmotic micropumps according to the microelectrode

arrangement: (i) micropumps with asymmetric co-planar

electrodes (AM), (ii) micropumps with 3D or non-planar

electrodes (3DM), and (iii) traveling-wave electroosmotic

micropumps (TWM).

Bazant et al. theoretically predicted that the 3DM design

will increase the electrolyte net velocity up to mm/s [10, 11].

Their theory arises from fact that the counter-rotating

regions of fluid observed above the electrodes inhibit the net

flow. Hence, the authors suggested using the 3DM pumps

with asymmetric raised steps. In such arrangement, an

electrolyte flows in a manner of ‘‘fluid conveyor belt’’ above

the non-planar electrodes and the counter-rotating eddies are

burrowed between adjacent electrodes. It has been experi-

mentally verified that the net velocity can be increased at

least by one order of magnitude with respect to the pure

co-planar arrangement [12, 13].

The TWM pumps rely on either a traveling-wave elec-

tric potential applied to an array of microelectrodes or a

spatio-temporally modulated surface potential on insulat-

ing microchannel walls [14–19]. In the most common

arrangement, a harmonic traveling wave of electric

potential is applied on a set of n co-planar or non-planar

microelectrodes with the phase shift 360/n� between two

adjacent electrodes.

The AM and 3DM systems usually use an interdigitated

arrangement, e.g. [7]. Fabrication of the TWM pumps is

more difficult due to topological reasons. However, it is

possible to exploit a practical spiral design of microelec-

trodes [14].

The net flow velocity in AC micropump systems

strongly depends on many parameters, e.g. [7, 13, 14, 20]:

(i) electric field parameters (amplitude, frequency, phase

shift), (ii) electrolyte parameters, and (iii) geometric

properties. Thus the AC micropumps suffer from the same

disadvantage as the DC electroosmotic systems—a high
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sensitivity of the pumping performance to structural and

operational parameters. However, the strong dependence of

the net velocity on the applied voltage and frequency can

be used for a simple control of the flow intensity and the

flow direction [7, 19, 21]. The main advantage of the AC

pumps is that only a low amplitude electric signal has to be

applied on a microelectrode system. The amplitude usually

does not exceed several Volts, which results in a substantial

reduction of undesirable faradaic interactions on the

electrode surfaces.

Mathematical models of AC electroosmosis have been

developed. The computation domain is usually divided into

the capacitor domains [vicinities of the polarized surfaces,

where electric double layers (EDL) are formed] and the

resistor domain (the electrolyte bulk). It is assumed that

electric potential in an arbitrary point of the system can be

represented by a product of a complex time-independent

function and a time-dependent function (e.g., harmonic).

Then, the boundary conditions for electric potential on the

capacitor–resistor interfaces can be derived. However,

these boundary conditions are valid only when a low

voltage (amplitude \25 mV) is applied on the microelec-

trodes, i.e., the linearization of the Poisson–Boltzmann

equation is justified [20]. When a higher voltage is applied,

distributions of the ion concentration and the electric

charge in a proximity of the electrodes are not linear

functions of the voltage. Hence, the capacitance of the EDL

capacitance can not be considered to be independent of the

applied voltage in such case. Further, the Boltzmann dis-

tribution is valid only for systems in the thermodynamic

equilibrium. The AC electroosmotic systems are rarely

close to the equilibrium because of the intensive convec-

tion transport at the electrode surfaces. In spite of the

mentioned limitations, the capacitor–resistor boundary

conditions are used in the most of the reported analyses,

e.g. [2, 5, 13, 19]. If the distribution of the electric potential

at the capacitor–resistor interface is evaluated, then slip

velocity boundary conditions can be expressed by the

Helmholtz–Smoluchowski equation [8]. So, the transport

(flow) problem is solved independently and only in the

resistor domain represented by the electrolyte bulk.

Mathematical models relying on the above mentioned

capacitor–resistor slip approximation [21–23], and more

complex Poisson–Boltzmann models [24, 25] and non-

equilibrium models [18, 26, 27] have been developed. The

Poisson–Boltzmann approach allows analyzing model

equation for voltages above the linearization limit, how-

ever, EDL is still considered to be in the thermodynamic

equilibrium. The non-equilibrium models describe the

electric potential distribution with the use of the Poisson

equation and zero velocity is applied on solid surfaces. The

models based on the Poisson equation should satisfactorily

describe the behavior of the AC electroosmotic systems

with non-equilibrated EDLs even if a higher voltage

applied.

Kilic et al. [28] pointed out the fact that for higher

applied voltages the classical Poisson–Boltzmann theory

predicts an inadmissible increase of the ionic concentration

at polarized surfaces. The concentration can not grow

above a certain value in real ionic systems due to steric

effects. The authors introduced a pseudo-diffusion term in

the balances of ions and the electric charge [29]. The

coefficient used in the pseudo-diffusion term is a function

of the ionic concentration and rises to infinity when the

steric limit is attained. Numerical analysis of an AC elec-

troosmotic system, for which the steric effect were con-

sidered, was reported in [30]. The authors, for example,

found that the model is able to predict flow reversals often

observed in the AM systems.

In this paper, we will compare two approaches for

modeling of the AC electroosmosis in selected microsys-

tems: (i) a TWM pump with a spatially continuous wave of

electric potential applied on a boundary (we call it a

‘‘single-mode arrangement’’), (ii) a TWM pump with a

wave of electric potential applied on a set of discrete

electrodes, and (iii) a 3DM pump. The first approach is

based on the use of the capacitor–resistor boundary con-

dition for electric potential and the slip boundary condition

for velocity. The other approach uses a non-equilibrium

mathematical model based on the Poisson equation. The

main motivation of the presented work is to verify the

predictions reported in [13, 19] and to clearly show limi-

tations of the capacitor–resistor approach.

2 Mathematical models

2.1 Micropump configurations

We consider four different arrangements of the AC elec-

troosmotic pumps, Fig. 1. The micropumps are represented

by a single segment of a long microfluidic channel. Each

microchannel consists of an arbitrary large series of the

segments. We assume that the microchannel width is much

larger than the characteristic dimensions of the segments,

so the AC electroosmotic pumps can be described as two-

dimensional objects (x - y coordinates).

A symmetric water electrolyte is considered to be the

fluid in microchannels. Symmetries of the charge numbers

(mono-monovalent electrolyte) and the ion diffusivities

(equal size of the anion and the cation) are assumed. For

example, a solution of potassium chloride in pure water

(pH 7) almost satisfies these conditions. Consideration of

such symmetric electrolyte enables to eliminate phenom-

ena that give rise to an increase of system complexity

(effects of the diffusion potential, etc.). No changes of
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density, viscosity and temperature are expected. No fara-

daic reactions are assumed on the electrodes. Formation of

the Stern part of EDL is not considered in this study.

The TWM pumps, Fig. 1a–c, are axially symmetric.

Hence the transport processes are studied only in one half

of the spatial domain. The single-mode TWM segment,

Fig. 1a, can be characterized by the half-height H and the

length L. The three and four TWM arrangements, Fig. 1b,

c, are described by the half-height H, the length L, the

electrode length Le, and the length of the gap between

adjacent electrodes g. The 3DM system is not axially

symmetric and is represented by four geometric charac-

teristics: the segment height H and length L, the electrode

width Le, the length of the gap between adjacent electrodes

g, and the height of the electrode step h.

The electric potential on the electrodes is a known

function of space and time defined for the single-mode

TWM arrangement by

ueðx; tÞ ¼ A cosðxt � kxÞ ¼ < weexpðixtÞð Þ; ð1Þ
weðxÞ ¼ A expð�ikxÞ; x 2 ð0; LÞ; k ¼ 2p=L ð2Þ

and for the other arrangements by

ue
mðtÞ ¼ ue xC

m; t
� �

¼ < we
m expðixtÞ

� �
; ð3Þ

we
m ¼ A exp �ikxC

m

� �
; ð4Þ

where

xC
m ¼ Lðm� 0:5Þ=n; m ¼ 1; 2; . . .; n: ð5Þ

is the position of the center of the m-th electrode in a n

electrode system.

2.2 Non-equilibrium approach

The electric potential field satisfies the Poisson equation

er2u ¼ �q; q ¼ Fðcþ � c�Þ: ð6Þ

In order to evaluate the field of electric charge density, two

molar balances for the anion (-) and the cation (?) have to

be used

oc�

ot
¼ �r � J�: ð7Þ

The total molar flux density of ions is given by the sum of

the convective and electromigration-diffusion contributions

(the Nernst–Planck equation)

J� ¼ vc� � D rc� � c�
F

RT
ru

� �
: ð8Þ

The velocity and pressure fields in the electrolyte are

described by the Navier–Stokes equation and the continuity

equation for incompressible Newtonian fluids

(a)

(b)

(c)

(d)

Fig. 1 Schematic configuration of the AC electroosmotic micro-

pumps, a the single mode TWM system, b the three phase TWM

system, c the four phase TWM system, and d the 3DM system
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q
ov

ot
þ v � rv

� �
¼ gr2v�rp� qru; ð9Þ

r � v ¼ 0: ð10Þ

The non-slip boundary conditions are used on the

electrolyte-solid interfaces

v ¼ 0: ð11Þ

The Dirichlet boundary conditions are used for electric

potential on the continuous electrode (the single-mode

TWM)

ue ¼ ueðx; tÞ; x 2 ð0; LÞ; ð12Þ

or on the discrete electrodes

ue ¼ ue
mðtÞ; x 2 xL

m; x
R
m

� �
; m ¼ 1; . . .; n: ð13Þ

No Faradaic current through the solid-electrolyte interfaces

is considered

n � J� ¼ 0: ð14Þ

The insulating boundary conditions are used for electric

potential on the non-electrode solid boundaries

n � ru ¼ 0: ð15Þ

Periodical boundary conditions at x = 0 and x = L are

applied

nðx; y; tÞ ¼ nðxþ L; y; tÞ; n ¼ u; v; p; c�: ð16Þ

At y = H we use either the condition of the planar symmetry

(TWM system) or a solid wall (3DM system). In order to

obtain consistent set of hydrodynamic conditions, we define

value of the reference pressure in one arbitrary point.

2.3 Equilibrium approach

The equilibrium approach enables to decouple the entire

problem to the electrostatic and flow parts.

The electrical problem in the electrolyte bulk is gov-

erned by the Laplace equation due to the electroneutrality

assumption

r2u ¼ 0: ð17Þ

The boundary conditions for electric potential are the same as

in the non-equilibrium model except the electrode

boundaries. Here the capacitor–resistor boundary conditions

are used [31, 32]

n � rru ¼ �CD
o

ot
ue � uð Þ: ð18Þ

Electric potential on the continuous electrode and the dis-

crete electrodes is described by Eqs. 12 and 13,

respectively.

Using complex formulation

uðx; y; tÞ ¼ < wðx; yÞ expðixtÞ½ �; ð19Þ

where w is a complex function expressing the time-

independent part of the potential field, we can rewrite Eqs.

17 and 18 in to the form

r2w ¼ 0; ð20Þ
n � rrw ¼ �ixCD we � wð Þ; ð21Þ

where for the continuous electrode

we ¼ weðxÞ; x 2 ð0; LÞ; ð22Þ

and for the discrete electrodes

we ¼ we
m; x 2 xL

m; x
R
m

� �
; m ¼ 1; . . .; n: ð23Þ

The Helmholtz–Smoluchowski equation describes the slip

velocity on the outer boundary of EDL

vslip ¼
e
g

ue � uð Þt � ru

¼ e
g
< we � wð Þ expðixtÞ½ �t � < rw expðixtÞð Þ:

ð24Þ

The slip velocity represents the tangential velocity at EDL.

The normal component of the velocity vector is considered

to be zero at EDL.

The time averaged slip velocity can be expressed as

v̂slip ¼
1

Tt

ZtþTt

t

vslipdt

¼ e
2g
< we � wð Þt � rw�½ �

¼ e
2g
< we � wð Þt � <ðrwÞ

þ e
2g
= we � wð Þt � =ðrwÞ:

ð25Þ

The time averaged Stokes equation and the continuity

equation are then used for description of the bulk

hydrodynamics

0 ¼ gr2v̂�rp̂; r � v̂ ¼ 0: ð26Þ

2.4 Dimensionless model

The model equations are transformed into a dimensionless

form. We have used a similar scaling as in [33]. The spatial

coordinates and the segment dimensions are scaled by the

factor L

~x ¼ x

L
; ~y ¼ y

L
; ~r ¼ Lr; ~xm ¼

xm

L
; ~g ¼ g

L
;

~h ¼ h

L
; ~H ¼ H

L
; ~L

e ¼ Le

L
; ~kD ¼

kD

L
:

ð27Þ

The dimensionless time ~t; the frequency ~f and the angular

frequency ~x are given by
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~t ¼ t

t�
; t� ¼

kDL

D
; k2

D ¼
eD
r
¼ eRT

2c�F2
;

~f ¼ ft�; ~x ¼ xt0 ¼ 2p~f :

ð28Þ

The other dimensionless quantities are defined by

~q ¼ cþ � c�ð Þ
2c�

; ~c ¼ cþ þ c�

2c�
;

~u ¼ u
u�
; u� ¼

RT

F
; ~w ¼ w

u�
; ~A ¼ A

u�
;

~v ¼ v

v�
; v� ¼

D

L
; ~w ¼ w

v�
¼

~f
~kD

:

~p ¼ p

p�
; p� ¼ 2c�RT :

ð29Þ

A combination of Eqs. 6–10 and 27–29 gives the

dimensionless form of the non-equilibrium mathematical

model

~r2
~u ¼ � 1

~k
2

D

~q; ð30Þ

o~c

o~t
¼ �~kD

~r � ~v~c� ~r~c� ~q ~r~u
� �

; ð31Þ

o~q

o~t
¼ �~kD

~r � ~v~q� ~r~q� ~c ~r~u
� �

; ð32Þ

1

Sc

o~v

o~t
þ ~kD~v � ~r~v

� �

¼ ~kD
~r2

~vþ Ra

~kD

� ~r~p� ~q ~r~u
� �

;

ð33Þ

~r � ~v ¼ 0: ð34Þ

The symbol ~kD is a fundamental simplex given by the ratio

of the Debye length kD (EDL thickness) and the geometric

size of the system L. Except of the dimensionless Debye

length, there are two other dimensionless parameters—the

Schmidt and Rayleigh numbers. In this study, we do not

deal with an asymptotic analysis of the model equation.

Only results for a typical symmetric water electrolyte in

microfluidic channels are reported. Hence in this section,

the physical meaning of the dimensionless criteria is

shortly discussed. Because the Schmidt number is high

(particularly Sc ¼ 500� 1Þ; the concentration and electric

charge boundary layers will be much thinner than the

momentum boundary layers [34]. It means that the velocity

field must be affected on a much higher distance from the

electrodes than the concentration fields. Different behavior,

not typical for microfluidic applications, can be expected

for electrolytes with extremely low viscosities and with

high diffusivities of ions. From the definition, the Rayleigh

number expresses a ratio between the forces that destabi-

lizes and stabilizes a static fluid [34]. In our modification,

the dimensionless ratio Ra=~k
2

D is a relative ratio between

the destabilizing electric body force and the stabilizing

viscous force. This ratio is very high in the presented

parametrical studies as well as in all AC microfluidic

pumps. A low value of the ratio necessarily leads to zero

net velocity.

The dimensionless form of the equilibrium model con-

sist of the Laplace equation together with the capacitor–

resistor boundary condition

~r2 ~w ¼ 0; ð35Þ

n � ~r~w ¼ �2pi~f ~w
e � ~w

� �
; ð36Þ

and the time averaged Stokes equation and continuity

equation together with the slip boundary condition

0 ¼ ~k
2

D
~r2

~̂v� ~r~̂p; ~r � ~̂v ¼ 0; ð37Þ

t � ~̂v ¼ ~̂vslip ¼
Ra

2
< ~w

e � ~w
� �

t � ~r~w
�h i
; ð38Þ

The dimensionless electric potential on the electrodes in

the single-mode TWM system is expressed as

~w
e ¼ ~w

e
~xð Þ ¼ ~A exp �2pi~xð Þ; ð39Þ

and in the discrete electrode TWM systems

~w
e ¼~w

e

m ¼ ~A exp �2pi~xC
m

� �
;

xC
m ¼

m� 0:5

n
; m ¼ 1; 2; . . .; n:

ð40Þ

For the single-mode TWM system, Ramos et al. [19]

pointed an analytical solution of (35) and (36)

~w ¼ ~A
i~f

1þ i~f
exp �2pi~xþ 2p~yð Þ: ð41Þ

Substituting (41) and (39) into (38) we obtain

h~vi ¼ ~̂vslip ¼ Ra
p~f

1þ ~f
2

~A
2
: ð42Þ

In this case, the time averaged slip velocity does not

depend on the x-coordinate and then is equal to the net

velocity.

3 Numerical analysis

3.1 Solvers

Numerical analyses both of the non-equilibrium and the

equilibrium models were carried out in the Comsol Mul-

tiphysics software.

We used a standard femtime procedure for the dynamical

analysis of the non-equilibrium mathematical model,

Eqs. 30–34 and the boundary condition (11–16) in the
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dimensionless form. Transient simulations from a homo-

geneous steady state to stable periodic regimes were car-

ried out in the first step. The obtained stable period

solutions were then analyzed to compute the time-averaged

net velocity and other characteristics of the AC electroos-

motic flow.

The model equations describing the non-equilibrium

TWM system were alternatively analyzed using a non-

linear stationary solver femnlin after a transformation to

moving coordinates.

The numeric analysis of the equilibrium model (35, 37)

with boundary conditions (36, 38) was realized in two

steps. The analysis of the linear electric potential problem

(35, 36) for the discrete electrode systems was done using a

linear femnlin solver in the first step. The flow problem (37,

38) was solved by the femnlin solver.

3.2 Spatial discretization

The Comsol Multiphysics software requires discretization

of spatial domains into a set of finite elements. Parameters

of the element meshes depend on the type of the AC

electroosmotic pumps. As an example, we mention mesh

parameters of the 3DM system. In the non-equilibrium

model, we always used hybrid triangle-rectangle meshes of

finite elements, which enables efficiently discretize the

entire spatial domain including EDLs, Fig. 2a. The rect-

angle elements with a high aspect ratio (up to 6.7 9 10?3)

were employed in EDLs, whereas the triangle elements

were used at electrode edges and in the electrolyte bulk.

The edge size of the smallest and the largest elements was

1.2 9 10-6 and 8 9 10-2 dimensionless units, respec-

tively. Meshes of the triangle finite elements were

employed in the equilibrium 3DM model, Fig. 2b. Higher

element densities were used at the electrode edges. The

edge size of the smallest and the largest elements was 1

9 10-4 and 1 9 10-1 dimensionless units, respectively.

Number of the finite elements was approximately equal to

7000 and 4500 for the non-equilibrium and equilibrium

models, respectively. As an improper spatial discretization

can result in an unacceptable error of the numerical

approximation, meshes of various structures and densities

were tested.

4 Results and discussion

Selected dependencies of the net velocity on principal

model parameters such as the dimensionless frequency, the

dimensionless amplitude or the dimensionless step height

(3DM system) are presented in this section. Results

obtained by analyses of the non-equilibrium and the equi-

librium models are compared. The detected discrepancies

and their possible origins are discussed. In Figs. 3, 4, 5, 6,

9, 10, 11, 12 and 13, parametric dependencies computed by

the non-equilibrium model are plotted by dashed lines with

empty markers. The equilibrium results are represented by

solid lines with filled markers. The solid lines without

markers denote the velocity of the electric potential trav-

eling wave.

Fig. 2 Examples of meshes used for the 3DM arrangement, a non-

equilibrium model, b equilibrium model. Only details above electrode

edges are plotted, detail size: 0.08 9 0.03 dimensionless units
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Fig. 3 Dependencies of the dimensionless velocity on the dimen-

sionless frequency for the single mode TWM system, ~kD ¼ 0:1—

circle, ~kD ¼ 0:01—triangle and ~kD ¼ 0:001—square. Solid (empty)

markers represents the equilibrium (non-equilibrium) model. Dimen-

sionless amplitude: ~A ¼ 1
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4.1 Single mode traveling wave pump

First of all, we present results of the parametric study for

the single mode traveling wave arrangement. Solution of

the equilibrium model is given by Eq. 42. Non-equilibrium

solutions are obtained numerically.

4.1.1 Frequency and amplitude characteristics

Dependencies of the net velocity on the AC frequency are

shown in Figs. 3, 4, 5 and 6. In the logarithmic plot, these

dependencies are concave functions with a single maxi-

mum that can be found at ~f � 1: It reflects a conclusion of

the capacitor–resistor theory that predicts the maximal net

velocity for the frequency D/(L kD) [20].

Effects of the ratio of the EDL thickness and the

segment length (~kDÞ for low amplitude regimes ( ~A ¼ 1Þ
are demonstrated in Fig. 3. Because for such low ampli-

tudes the EDL capacitance is constant (the linearization

used by the equilibrium model is justified), one can

expect quantitative agreement between the prediction of

the equilibrium and the non-equilibrium models. How-

ever, it is shown that the frequency dependencies pre-

dicted by both the models coincide only for very low

values of ~kD: If the parameter ~kD is equal to 0.1, clouds

of electric charge penetrate far from the electrode and the

EDL domain can not be further neglected when the flow

problem is solved. The non-equilibrium model predicts a

substantial decrease of the net velocity in such case. One

of the equilibrium model assumptions is that the EDL

thickness is negligible. However, no quantitative measure

of this ‘‘negligibility’’ is given. The results plotted in

Fig. 3 clearly demonstrate validity of the thin EDL

assumption in the meaning of the dimensionless Debye

length in the TWM system.

Slopes of the net velocity characteristics predicted by

both the models can differ for ~f [ 1; see Figs. 4, 5 and 6.

The AC frequency, for which this difference becomes

significant, depends on the dimensionless Debye length. If

Figs. 4, 5 and 6 are compared, it can be seen that for a

smaller Debye length the slopes deviates at higher fre-

quencies. The observed effect is related to the EDL

relaxation. There are at least two important time scales.

From the RC circuit theory, the maximal signal gain is

obtained when the period of an AC electric field is

approximately equal to the charging time LkD=D: How-

ever, EDL can be in the thermal equilibrium on a shorter

time scale that is equal to the characteristic diffusion

Debye time (Debye time) of ions across EDL kD
2 /D [20]. If

the AC frequency is higher than the reciprocal diffusion

time, the electric charge distribution in EDLs must be

highly deviated from the Boltzmann distribution. It hap-

pens for the dimensionless frequencies higher than ~k
�1

D :

The time averaged net velocities obtained by the

mathematical models are compared with the velocity of the

traveling wave electric potential (solid line), Figs. 4, 5 and

6. If ~kD is high (e.g., thin channels filled with a low con-

centrated electrolyte), the equilibrium model predicts much
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Fig. 4 Dependencies of the dimensionless velocity on the dimen-

sionless frequency for the single mode TWM system, ~A ¼ 1—circle,
~A ¼ 5—triangle and ~A ¼ 10—square. Solid (empty) markers repre-

sent the equilibrium (non-equilibrium) model. System size: ~kD ¼ 0:1
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Fig. 5 Dependencies of the dimensionless velocity on the dimen-

sionless frequency for the single mode TWM system, ~A ¼ 1—circle,
~A ¼ 5—triangle and ~A ¼ 20—square. Solid (empty) markers repre-

sent the equilibrium (non-equilibrium) model. System size: ~kD ¼ 0:01
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higher net velocities than the non-equilibrium model,

Fig. 4. The net velocity computed by the equilibrium

model surprisingly exceeds the velocity of the electric

potential wave ~w ¼ ~f ~k
�1

D for higher amplitudes ~A and

smaller frequencies ~f \1:

Of course, this unphysical prediction is given by the

limitations of the equilibrium model (the Debye length

thickness and the linearization limit). Conversely, the non-

equilibrium model produces physically relevant data. The

non-equilibrium results for ~A ¼ 10 and ~f \1 almost coin-

cide with the electric potential wave velocity and the net

velocity never exceed the electric potential wave limit.

For ~kD ¼ 0:01; Fig. 5, the predictions of both the

models are in relatively good agreement in low amplitude

regimes ( ~A ¼ 1 or ~A ¼ 5Þ: The equilibrium model predic-

tions are more reliable in such regimes due to a smaller

Debye layer thickness. Thus the frequency and amplitude

influences on behavior of the TWM electroosmotic pump

can be clearly observed. As the AC frequency approaches

the reciprocal Debye time, slopes of the velocity charac-

teristics predicted by both the models become different

because the equilibrium model does not describe EDLs out

of the thermal equilibrium. The amplitude limitation of the

equilibrium model is distinctly visible in the high ampli-

tude regime ~A ¼ 20; when the estimated net velocity sub-

stantially exceeds the electric potential wave velocity. The

velocity predicted by the non-equilibrium model also

slightly exceeds the electric potential wave velocity ~w in

this regime. The most probable reason for this behavior is

given by a limited precision of numerical approximations.

To estimate the numerical errors caused by the spatial

discretization, we carried out convergence studies in

selected points of the parametrical space. An example of

such study is depicted in Fig. 7. In the TWM arrangement,

meshes of the rectangle elements were equidistantly dis-

tributed along the x-axis. The distribution along the y-axis

was always non-equidistant. The data in Fig. 7 show that

the numerical errors resulting from the spatial discretiza-

tion are negligible for the mesh setting usually used in the

numerical analysis nFx 9 nFy = 60 9 40 (27 elements

across EDL, the smallest edge size 9.2 9 10-5). We should

note that other numerical errors can result from the time

discretization, the setting of the dynamical solver or the

computation of mean values.

Differences between the equilibrium and non-equilib-

rium results occurring in low frequency regimes (~f \1Þ
will be explained by means of Fig. 6. For high amplitudes,

the maxima of the net velocities predicted by the non-

equilibrium model are shifted to lower frequencies than

those predicted by the other model. It results from the fact

that the Debye layer capacitance is not constant above the
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Fig. 6 Dependencies of the dimensionless velocity on the dimen-

sionless frequency for the single mode TWM system, ~A ¼ 1—circle,
~A ¼ 5—triangle and ~A ¼ 10—square. Solid (empty) markers

represent the equilibrium (non-equilibrium) model. System size:
~kD ¼ 0:001
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Fig. 7 Differences between the net velocity computed by the non-

equilibrium model and the velocity of the electric potential wave are

plotted as functions of the number of finite elements. a Dependence

on the number of the discrete elements in the x-direction, nFy = 40;

b dependence on the number of the discrete elements in the y-

direction, nFx = 60; ~kD ¼ 0:01, ~f ¼ 0:1; ~A ¼ 20: The marker A refers

to the mesh setting used in parametric studies
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linearization limit (CD [ e=kDÞ: The charging of a capac-

itor with a higher capacitance takes more time, i.e. the

‘‘optimal’’ charging frequency must be shifted to a lower

value. This shift is clearly depicted in Fig. 6.

In low frequency and high amplitude regimes, the non-

equilibrium model predicts higher net velocity than the

equilibrium model, Fig. 6. Although, the EDL charging

takes more time in a high amplitude regime, there is also an

increase of the tangential component of the electric field

strength, which finally results in the net velocity increase.

The above described phenomenon can be compensated

or overcome by another effect in the cases presented in

Figs. 4 and 5. As the net velocity approaches the velocity

of the electric potential wave, hydrodynamic limitations

become important. In the equilibrium model, the net

velocity at a fixed frequency can grow to infinity with

increasing amplitude (it results from Eq. 24). However, the

net velocity is physically limited by the velocity of the

electric potential wave that pulls clouds of the formed

electric charge. The pulled ions interact with the liquid by

viscous forces, which then results in the net flow. This

behavior is well described by the non-equilibrium model.

The hydrodynamic flow must be necessarily delayed with

respect to the electric potential wave propagation.

4.1.2 Dynamical fields

As an illustrative example, we show the evolution of a

velocity field computed by the non-equilibrium model for

the three-electrode TWM pump, Fig. 8. The velocity pat-

terns are plotted in selected phases of the stable periodic

regime, i.e. after the initial transient. Typical eddies are

formed at the electrode edges. Two periods of the velocity

pattern can be easily identified. The first one results from

the fact that a change of the electrode polarity has no effect

on the direction both of the coulombic force and the net

velocity. Hence this period is equal to one half of the

electric field period (180�). The other period is given by the

voltage phase shift between adjacent electrodes. In the three

electrode arrangement, we can observe the same pattern

after each one sixth of the voltage period (60�). After each

60�, the velocity pattern moves over one third of the seg-

ment length to the right. This space shift equivalently cor-

responds to the pattern move over one third of the segment

length to the left after each 120�.

4.2 Discrete electrodes

It is difficult to construct an experimental single mode

TWM pump. Instead of it, the single mode TWM systems

can be approximated by a set of discrete planar electrodes

among them a voltage phase shift is applied. In Fig. 9,

dependencies of the net velocity on the AC frequency for

Fig. 8 The velocity field in various phases of the applied electric

signal a. Non-equilibrium model, ~kD ¼ 8:333	10�4; ~A ¼ 10; ~f ¼ 1:2

976 J Appl Electrochem (2010) 40:967–980

123



the single mode, three-electrode and four-electrode

arrangements are plotted. The net velocities obtained for

the discrete electrode TWM systems are always smaller

than those for the single mode TWM system. In the dis-

crete systems, the microchannel surface is polarized only at

the electrodes. Hence the coulombic force is localized

especially at the electrode [9] and does not induce the

electroosmotic flow along the entire spatial domain. One

can see that the net velocity predicted for four-electrode

arrangement is higher than that for the three-electrode

arrangement. It is because the four-electrode arrangement

better approximates the single-mode system. Further,

results given by the equilibrium and the non-equilibrium

models for the three-electrode arrangement were com-

pared. The obtained velocity dependencies almost coincide

for the selected set of parameters. Discrepancies are

observed only in high-frequency regimes, in which the

Boltzmann distribution is not satisfied.

4.3 Non-planar electrodes

4.3.1 Frequency and amplitude characteristics

The frequency dependencies of the net velocity for the

3DM system are plotted in Fig. 10. All velocity maxima

are located close to ~f ¼ 1: It agrees with the prediction

of the RC circuit theory [20]. However, there are two

significant discrepancies between the equilibrium and the

non-equilibrium results. The non-equilibrium model pre-

dicts smaller net velocities for ~f ¼ 1 than the other model.

If the net velocity is transformed back to the dimensional

form, the non-equilibrium results are much closer to the

experimental data reported in [12, 13]. This result can be

expected because the linearization used in the equilibrium

model is not justified for the system where ~A� 1:

Further, the non-equilibrium velocity dependence for
~h ¼ 0:1 has not a single peak shape. It looks more like two

merged peaks. Two peak patterns were experimentally

observed by Urbanski et al. (see Fig. 4 in [12]) but not

predicted by the equilibrium model [13]. The presence of

the two-peak patterns probably results from the fact that

there are more than one geometric length scale in the 3DM

arrangement. Only one geometric scale L is usually used,

however, the step height h at least partially represents

another geometric scale. By other words, the characteristic

length of the resistor domain is affected both by the length

of the segment and the electrode step height. These two

geometric scales typically differ by one order of magni-

tude, which corresponds with the distance between the two

velocity maxima in the frequency characteristics, dashed

line in Fig. 10 and [12].

For a complex view on the 3DM problem, the frequency

characteristic in a low amplitude regime is plotted in

Fig. 11. The model predictions are in a relatively good

agreement for ~f \1 and both the net velocity maxima are
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Fig. 10 Dependencies of the dimensionless velocity on the dimen-

sionless frequency for the 3DM system, ~kD ¼ 3:647	 10�3; ~A ¼
56:15: ~h ¼ 0:02—triangle, ~h ¼ 0:1—circle. Solid (empty) markers

represent the equilibrium (non-equilibrium) model
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Fig. 9 Dependencies of the dimensionless velocity on the dimen-

sionless frequency. Equilibrium single mode TWM system—solid
triangles, non-equilibrium four electrode TWM system—empty
squares, non-equilibrium three electrode TWM system—empty
circles, equilibrium three electrode TWM system—solid circles.

Dimensionless amplitude: ~A ¼ 1: System size: ~kD ¼ 0:001
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again found at ~f ¼ 1: The velocity characteristic diverges

especially for ~f [ 10: The existence of the two length

scales of the resistor domain is the most probable reason

for such behavior. The ratio between the charging fre-

quency for the resistor domain of length h (the step size)

and L (the segment length) is given by the reciprocal

dimensionless step height ~h
�1
: There are at least two rea-

sons why the net velocity predicted by the non-equilibrium

models is usually smaller in the studied frequency range.

At the electrode corners, EDLs are not one-dimensional

even if their thickness is small. Further, if the equilibrium

model is used, velocity discontinuities are applied on the

corners, which can possibly result in an unpredictable

behavior.

The velocity dependencies on the amplitude were also

computed, Fig. 12. According to the theory [1], the

velocity predicted by the equilibrium model is propor-

tional to the amplitude square. The same is true for the

non-equilibrium model up to ~A � 5. The non-equilibrium

dependencies become non-linear for higher amplitudes.

The ratio between the net velocities predicted by the

equilibrium and the non-equilibrium models remains

constant in low amplitude regimes. The dependencies

almost coincide for ~f ¼ 0:4559; however, a higher dis-

crepancy is observed for the other frequency, ~f ¼ 18:23.

When a higher frequency is applied, the EDL has a more

dynamical character. In the meaning of the equilibrium

model, the capacitor thickness is not given by the Debye

length.

4.3.2 Step-size characteristics

Dependencies of the net velocity on the electrode step size

for three different frequencies are shown in Fig. 13. We

have compared these characteristics with experimental
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Fig. 12 Dependencies of the dimensionless velocity on the amplitude

for the 3DM system, ~kD ¼ 3:647	 10�3; ~h ¼ 0:1: ~f ¼ 0:4559—

triangle, ~f ¼ 18:23—circle. Solid (empty) markers represent the

equilibrium (non-equilibrium) model
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Fig. 13 Dependencies of the dimensionless velocity on the electrode

step height for the 3DM system, ~kD ¼ 3:647	 10�3; ~A ¼ 56:15:
~f ¼ 18:23—circle, ~f ¼ 22:79—triangle, ~f ¼ 27:35—square. Solid
(empty) markers represent the equilibrium (non-equilibrium) model
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results published in [12]. The maximal net velocities pre-

dicted by both the models are comparable with the exper-

imental data. The non-equilibrium model does not predict

the flow reversals that were experimentally observed for

low electrode step sizes (for given set of parameters).

However, the non-equilibrium model is able to better sense

the positions of the velocity maxima and the velocity

decrease for higher step sizes. If compared with the

experimental data (Fig. 9 in [12]), the equilibrium model

underestimates the net velocity for low step sizes and

overestimates it for high step sizes. Moreover, the velocity

characteristics obtained by the equilibrium model are

characterized by two local maxima. The maximum

observed for very low step sizes is unexpected and physi-

cally unjustified. We suggest the following reason for these

discrepancies. In the 3DM arrangement, the formed EDL is

truly two-dimensional. Clouds of the electric charge that

temporarily accumulates above the horizontal and the

vertical electrode surfaces necessarily overlap. The concept

of the slip velocity especially at the electrode corners leads

to physical and also numerical difficulties.

5 Conclusions

We have compared the equilibrium and non-equilibrium

approaches for mathematical modeling of AC electroos-

motic micro and nanosystems. We have found that there are

many discrepancies between the model predictions. The

equilibrium model is, of course, a rougher approximation of

real physical systems. Hence, the discrepancies were

expected in regimes where the equilibrium model assump-

tions are not satisfied. Several reasons for the observed

discrepancies have been identified: (I) non-constant EDL

capacitance in high amplitude regimes, (II) the slip

boundary conditions do not respect a finite velocity of the

applied electric potential wave in high amplitude regimes,

(III) truly two-dimensional character of EDL, (IV) EDL can

be out of the equilibrium, (V) a non-negligible EDL

thickness, (VI) more spatial scales of the resistor domain

(only the 3DM system), and (VII) the precision of numer-

ical approximations. The comparison of the equilibrium and

non-equilibrium results has further shown three important

actualities: (a) how the equilibrium model overestimates or

underestimates the net velocity, (b) how the velocity

maxima in the frequency characteristics can be shifted, if

the equilibrium model assumptions are not satisfied, (c) a

parametric region where the equilibrium model is applica-

ble. Because the data are obtained in a dimensionless form,

they can be used for various AC electroosmotic systems.

General conclusions can be expressed for the single

mode TWM system. Predictions of the two models are in

good agreement when the dimensionless Debye length is

small (the ~kD limit is between 0.001 and 0.01), the

amplitude is small (the ~A limit is between 1 and 5) and the

frequency is lower than the reciprocal Debye time

(~f [ ~k
�1

D Þ: A qualitative comparison with respect to the

equilibrium model follows. If the frequency is higher than

the reciprocal Debye time, the non-equilibrium model

predicts smaller net velocities (reason IV). If the amplitude

is higher than the limit and ~f \1; the non-equilibrium model

can predict higher (I) or smaller net velocities (II and/or V).

When the ~kD is above the limit, the net velocity from the non-

equilibrium model is always lower (III–V). Further, the non-

equilibrium model predicts shifts of the net velocity

maximum to higher (reason II) and lower (reason I)

frequencies than is the reciprocal charging time L kD/D.

The above described results can not be fully exploited in

conclusions for the three and four electrode TWM systems

and the 3DM systems due to additional geometric param-

eters. The numerical analysis of both the models showed

that the attained net velocity in a discrete TWM system is

always lower than in the single mode TWM system with

the same characteristic parameters.

For certain parameter values, the dependence of the net

velocity on the AC frequency in the 3DM pumps is char-

acterized by two local maxima [12]. Similar behavior

indicates the non-equilibrium model. We assume that the

two-peak frequency dependencies are given by two geo-

metric scales of the resistor domain (VI). One of the scales

must somehow depend on the height of the electrode step.

We suggest identifying the other length scale and then

modifying the equilibrium model in future. The two-

dimensional character of EDL (III) should not be neglected

if either EDLs overlap at electrode corners (3DM systems)

or adjacent electrodes are so close that the EDLs merge

(discrete TWM systems).

All numerically obtained results are necessarily deviated

from exact solutions (VII). It is true for both the equilib-

rium model and the non-equilibrium model. Numerical

errors result from the spatial and time discretizations, the

evaluation of integral mean values (the net velocity) or

variable discontinuities at domain boundaries (electric

potential, the slip velocity). The presented numerical

results were checked for selected sets of the model

parameters. Hence, relative errors of the numerical

approximations should not exceed an acceptable range.

It can be summarized that both the equilibrium and non-

equilibrium models are powerful tools to design AC elec-

troosmotic micropumps and to analyze their behavior. The

obtained results are mostly similar if a voltage does not

exceed the linearization limit. Hence the equilibrium model

should be the first choice for a fast and qualitative analysis.

However, for many cases, that are relevant to real experi-

mental microdevices, the use of the equilibrium model is

not justified. The non-equilibrium model should predict the
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qualitative and the quantitative behavior of AC electroos-

motic pumps more precisely in a much broader parameter

range. But its implementation is difficult, more time con-

suming, and the results can be affected by a larger

numerical error. For the future, we consider to carry out

experimental measurement in well defined microchips in

order to confirm or disprove the predictions of the non-

equilibrium model. We must further note that the presented

analysis does not consider the condensed layer formation

[28–30].

We believe that the AC electroosmotic pumps could

be promising tools for various microfluidic applications.

This theoretical contribution presents an alternative non-

equilibrium approach to predict their quantitative and

qualitative behavior.
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