The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

COMSOL News Magazine 2017

Characteristic Parameters of a Coaxial Cable

Electrical cables, also called transmission lines, are used everywhere in the modern world to transmit both power and data. These cables carry electromagnetic energy, but instead of dealing with the full complexity of the electromagnetic fields, they are more commonly classified according to parameters such as capacitance, inductance, and impedance. In this model of a coaxial cable, we ...

Axial Homopolar Induction Bearing in 3D

This model illustrates the working principle of an axial homopolar induction bearing. An electrically conducting rotor rotating in a magnetic field produced by a permanent magnets induces eddy currents on the conducting rotor. The eddy currents, in turn, produce a magnetic field that opposes the magnetic fields by the magnets and induces a force that opposes the motion of the rotor. The axial ...

Linear Magnetic Gear

In this model, a linear magnetic gear system with a gear ratio of 11:4 is modeled. The liner magnetic gear is assumed to be infinitely long with the modular structure that is repeating on either side. Only a single modular section is modeled by using the customized linear periodic boundary condition. Both the low speed and the high speed armatures (rotors) consist of permanent magnets and back ...

Magnetic Stiffness of an Axial Magnetic Bearing in 3D

The model illustrate the technique to calculate the magnetic stiffness in a 3D geometry of a permanent magnet axial magnetic bearing. The *Magnetic Fields* physics is used to model the bearing and compute the magnetic forces. The *Deformed Geometry* and *Sensitivity* physics are used to compute the magnetic stiffness. This model is featured and explained in much greater detail in the following ...

Inductive Liquid Metal Pump

Induction pumps are used in high temperature cooling systems. The principle of operation is equivalent to a linear three phase induction motor. The lack of moving parts and the pumped liquid being kept in a hermetically closed system are clear advantages. This model shows how to simulate a generic liquid Na pump.

Winding Designer for Electrical Machines

You can use this simulation app as a guide on how to automate selections using the Application Builder. In the example app, the selection algorithm depends on the relationship between the electrical and mechanical angles, which are generally used in the design of windings in electrical machines. Get more details in our blog post: [How to Automate Winding Design in Electrical Machines with an App]( ...

Ion Funnel

An electrodynamic ion funnel provides an efficient means of transferring ions from regions of high pressure to high vacuum. The ion funnel can couple devices which generally operate at pressures of different orders of magnitude, such as ion mobility spectrometers and mass spectrometers, allowing mixtures of ionized gases to be separated and analyzed while minimizing losses. This model ...

Radial Magnetic Coupler in 3D

Radial magnetic coupling between two permanent magnet rotors is modeled using the Rotating Machinery, Magnetic interface. The permanent magnets in the inner and the outer rotors are outward flux-focused and inward flux-focused to maximize the coupling torque.

Single-Phase Induction Motor: TEAM Workshop Problem 30

This is a single-phase induction motor model from the Transient Electromagnetic Analysis Method (TEAM) workshop problem 30. The electromagnetic torque, induced voltage, and rotor losses are computed with COMSOL Multiphysics at various rotor speed and compared with the results from TEAM workshop problem 30. The Magnetic Fields physics interface is used to model the motor in the frequency domain ...

91–99 of 99
Next |