The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Acoustic Transmission Loss through Periodic Elastic Structures

In this model, two fluids are separated by a solid elastic structure. An acoustic pressure wave impacts the structure resulting in a reflected wave and a wave transmitted with a loss through the structure. This model investigates the transmission loss through the structure. The effects of incident angle, frequency, and dampings are studied. Important features used: Acoustic-structure ...

Acoustic-Structure Interaction with a Perfectly Matched Layer (PML)

This small tutorial model shows how to set up a model with a solid mechanics and a pressure acoustics domain including a common perfectly matched layer (PML). The PML is used to model an open or infinite domain for both the elastic waves and the pressure waves. Two configurations of PMLs exist (this model describes the first case which is also the most difficult to handle): 1. One PML should ...

Absorptive Muffler

The sound level from a car depends to a great extent of the quality of the muffler. Over the years, researchers in the car industry have struggled to produce mufflers that are efficient from both an acoustic and an environmental perspective. This model describes the pressure wave propagation in a muffler for an internal combustion engine. The model also shows how to analyze both inductive and ...

Acoustic Streaming in a Microchannel Cross Section

Recent advances in the fabrication of microfluidic systems require handling of live cells and other micro particles as well as mixing. All this can, for example, be achieved using acoustic radiation forces and the viscous drag from the streaming flow. Streaming: Due to the nonlinear terms in the Navier-Stokes equations, harmonic perturbation of the flow will lead to a net time-averaged flow ...

One-Family House Acoustics

This model shows an application of the Acoustic Diffusion Equation physics interface. The acoustics in a two story one-family house consisting of 10 rooms is analyzed. The steady state sound pressure level (acoustic energy density) distribution is analyzed for a sound source located in the main living room. The reverberation time T60 of the different coupled rooms is then studied using the ...

Loudspeaker Driver in a Vented Enclosure

This model of a boxed loudspeaker lets you apply a nominal driving voltage and extract the resulting sound pressure level in the outside room as a function of the frequency. The sensitivity, both on-axis and spatial, is determined as function of frequency. These are some of the most important design parameters for a loudspeaker. The electromagnetic properties of the driver are supplied from the ...

Acoustic Levitator

An ultrasonic standing wave levitator, also called acoustic levitator, is a device used for levitating fluid and solid particles in an acoustic field. The standing acoustic waves exert an acoustic radiation force on the particles. The force is a second order effect and stems from a combination of the time averaged pressure and inertial interaction between the particles and the acoustic field. ...

Cylindrical Subwoofer

In this model, the acoustic field inside and outside a down-firing subwoofer is computed. This model is set up in 2D axisymmetry using the Pressure Acoustics application mode. The modeled physical domain is a hemisphere with a radius of 1 m. To minimize the effect of non-physical reflections at the exterior boundary of this domain, an absorbing Perfectly Matched Layer (PML) is added. The ...

Acoustic Muffler with Thermoviscous Acoustic Impedance Lumping

This model utilizes the thermoviscous acoustic interface in a sub-model to obtain detailed results for the transfer impedance of a perforated plate (including the thermal and viscous losses). The impedance is in turn used as an internal impedance in a pressure acoustic model of a muffler. The results are compared to classic impedance models and measurements.

Open Pipe

In this model, sound created by a vibrating piston radiates through a baffled pipe. The impedance is measured and then used in an impedance boundary condition that replaces the surrounding air domain. This technique can be employed to reduce solution time and memory usage for large models with pipe openings.