The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

1D Lithium-Ion Battery Model for Internal Resistance and Voltage Loss Determination

This tutorial digs deeper into the investigation of rate capability in a battery and shows how the *Lithium-Ion Battery* interface is an excellent modeling tool for doing this. The rate capability is studied in terms of polarization (voltage loss) or the internal resistance causing this loss. A typical high current pulse test, namely a Hybrid Pulse Power Characterization (HPPC) test, is ...

Heterogeneous Lithium-Ion Battery Model

This model describes the behavior of a lithium-ion battery unit cell modeled using an idealized three-dimensional geometry. The geometry mimics the structural details in the porous electrodes. Such models are referred to as heterogeneous models. The modeling approach for heterogeneous models differs from typical battery models, such as the Newman model. In homogeneous models, averaged ...

Liquid-Cooled Lithium-Ion Battery Pack

This model simulates a temperature profile in a number of cells and cooling fins in a liquid-cooled battery pack. The model solves in 3D and for an operational point during a load cycle. A full 1D electrochemical model for the lithium battery calculates the average heat source.

Fuel Cell with Serpentine Flow Field

This example models the flow and mass transport in the channels and the gas diffusion layer (GDL) of a polymer electrolyte fuel cell. The cathode electrode reaction is modeled as a boundary condition, where the local current density depends on the overpotential and the local oxygen concentration. The overpotential is solved for along the cathode boundary by the use of a distributed DAE. The ...

Primary Current Distribution in a Lead-Acid Battery Grid Electrode

This 3D model example demonstrates the use of the Primary Current Distribution interface for modeling current distributions in electrochemical cells. In primary current distribution, the potential losses due to electrode kinetics and mass transport are assumed to be negligible, and ohmic losses are govern the current distribution in the cell. Here you investigate primary current distribution in ...

1D Lithium-Ion Battery Model for Determination of Optimal Battery Usage and Design

This application example is useful for investigation of the following: Voltage, polarization (voltage drop), internal resistance, state-of-charge (SOC), and rate capability, in lithium-ion batteries under isothermal conditions. Some of the listed properties play an important role in battery management systems (BMS) in, for instance, electric and hybrid electric vehicles (see figure). The more ...

Lithium-Ion Battery with Multiple Intercalating Electrode Materials

Lithium-ion batteries can have multiple active materials in both the positive and negative electrodes. For example, the positive electrode can have a mix of active materials such as transition metal oxides, layered metal oxides, olivines etc. These materials can have different design properties (volume fraction, particle size), thermodynamic properties (open circuit voltage), transport ...

Ohmic Losses and Temperature Distribution in a Passive PEM Fuel Cell

In small PEM fuel cell systems (in the sub-100 W range) no active devices for cooling or air transport are normally used. This is due to the desire to minimize parasitic power losses from pumps and fans, and to reduce the system complexity, size, and cost. The reactants at the cathode are therefore transported by passive convection/diffusion. Also the heat dissipation occurs by passive transport ...

Soluble Lead-Acid Redox Flow Battery

In a redox flow battery electrochemical energy is stored as redox couples in the electrolyte, which is stored in tanks outside the electrochemical cell. During operation, electrolyte is pumped through the cell and, due to the electrochemical reactions, the individual concentrations of the active species in the electrolyte are changed. The state of charge of the flow battery is determined by ...

Electrochemical Impedance Spectroscopy in a Fuel Cell

A fuel cell unit cell is modeled using the full Butler-Volmer expression for the anodic and cathodic charge transfer reactions. The anodic and cathodic overpotentials depend on the local ionic and electronic potentials, which are obtained from the charge balance equations for ionic and electronic current. A small sinusoidal perturbation of the potential around a given cell voltage is applied and ...