The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Cyclic Voltammetry at a Macroelectrode in 1D

Cyclic voltammetry is a common analytical technique for investigating electrochemical systems. In this method, the potential difference between a working electrode and a reference electrode is swept linearly in time from a start potential to a vertex potential, and back again. The current-voltage waveform, called a voltammogram, provides information about the reactivity and mass transport ...

Diffuse Double Layer

At the electrode-electrolyte interface, there is a thin layer of space charge in a diffuse double layer. This may be of interest when modeling devices such as electrochemical capacitors and nanoelectrodes. This tutorial example shows how to couple the Nernst-Planck equations to the Poisson equation, in order to describe diffuse double layer according to a Gouy-Chapman-Stern model. The physics ...

Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a common technique in electroanalysis. It is used to study the harmonic response of an electrochemical system. A small, sinusoidal variation is applied to the potential at the working electrode, and the resulting current is analyzed in the frequency domain. The real and imaginary components of the impedance give information about the kinetic and ...

Cathodic Protection of Steel in Reinforced Concrete

This example models cathodic protection of a steel reinforcing bar in concrete. Three different electrochemical reactions are considered on the steel surface. Charge and oxygen transport are modeled in the concrete domain, where the electrolyte conductivity and oxygen diffusivity depend on the moisture content. The impact of different moisture levels on the corrosion currents is investigated.

Voltammetry at a Microdisk Electrode

Voltammetry is modeled at a microelectrode of 10um radius. In this common analytical electrochemistry technique, the potential at a working electrode is swept up and down and the current is recorded. The current-voltage waveform ("voltammogram") gives information about the reactivity and mass transport properties of the analyte. Microelectrodes are popular in electroanalysis because they ...

Orange Battery

This tutorial example models the currents and the concentration of dissolved metal ions in a battery (corrosion cell) made from an orange and two metal nails. This type of battery is commonly used in chemistry lessons. Instead of an orange, lemons or potatoes can also be used.

Localized Corrosion

Galvanic corrosion between two different phases (alpha and beta phases) in a metallic (magnesium) alloy is simulated for a representative cross-sectional microstructure configuration. A key feature in the model formulation is the implementation of both anodic and cathodic regions at the electrode surface using a single boundary represented in terms of the level set function.

Corrosion Protection of a Ship Hull

Impressed current cathodic protection is a commonly employed strategy to mitigate the ship hull corrosion where an external current is applied to the hull surface, polarizing it to a lower potential. In this model, the effect of propeller coating on the current demand is demonstrated.

Corrosion Protection of an Oil Platform Using Sacrificial Anodes

Steel structures immersed in seawater can be protected from corrosion through cathodic protection. This protection can be achieved by an impressed external current or by using sacrificial anodes. The use of sacrificial anodes is often preferred due to its simplicity. This example models the primary current distribution of a corrosion protection system of an oil platform using sacrificial ...

Carbon Dioxide Corrosion in Steel Pipes

Carbon dioxide in aqueous solution is highly corrosive and can cause significant damage to steel designs. Such conditions arise in pipes used in a variety of applications, especially within the petrochemical industry. In this tutorial example, turbulent flows consisting of carbon dioxide and water corrode the steel surface of pipes. The corrosion is influenced by the temperature and pH. This ...

1 - 10 of 20 First | < Previous | Next > | Last