Quick Search

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Andrew's Squeezing Mechanism

This is a benchmark model for rigid body dynamics. This model simulates the dynamic behavior of "Andrew’s squeezing mechanism", which is force driven and requires a very small time scale. Various angles in the mechanism are compared with the results from the reference.

Gas Box Designer

This application computes the back pressure in a network of pipes fed by a system of mass flow controllers (MFC). Each MFC supplies a given flow rate to one of the pipes, and can only function correctly if the back pressure remains below 760 Torr. The Pipe Flow Module is used to compute the pressure distribution inside the network of pipes and report whether a given design will meet the back ...

Multicomponent Tubular Reactor with Isothermal Cooling

This application uses the Chemical Reaction Engineering Module to study an elementary, exothermic, irreversible reaction in a tubular reactor (liquid phase, laminar flow regime). To keep its temperature down, the reactor uses a cooling jacket with a constant coolant temperature. The steady-state behavior of the reactor is investigated. The application visualizes how the Chemistry and Transport ...

Magnetic Stiffness of an Axial Magnetic Bearing in 3D

The model illustrate the technique to calculate the magnetic stiffness in a 3D geometry of a permanent magnet axial magnetic bearing. The *Magnetic Fields* physics is used to model the bearing and compute the magnetic forces. The *Deformed Geometry* and *Sensitivity* physics are used to compute the magnetic stiffness.

Rotating Plate in a Unidirectional Molecular Flow

This model computes the particle flux, number density and pressure on the surface of a plate that rotates in a highly directional molecular flow. The results obtained are compared with those from other, approximate, techniques for computing molecular flows.

Shell Conduction

This model simulates a static analysis of heat conduction in a thin conductive shell. This is a benchmark model where the result is compared with a NAFEMS benchmark solution.

Rössler Attractor

A Rossler attractor is a system of three non-linear, ordinary differential equations. The Rossler attractor is similar in nature to the Lorenz attractor. The non-linear equations can be solved in COMSOL by conveniently using the Massless formulation available in the Mathematical Particle Tracing interface.

Geometric Parameter Optimization of a Tuning Fork

This model computes the fundamental eigenfrequency and eigenmode for a tuning fork that is synchronized from Creo Parametric via the LiveLink interface. The length of the fork is then optimized so that the tuning fork sounds the note A, 440 Hz.

1D Lithium-Ion Battery Model for Determination of Optimal Battery Usage and Design

This application example is useful for investigation of the following: Voltage, polarization (voltage drop), internal resistance, state-of-charge (SOC), and rate capability, in lithium-ion batteries under isothermal conditions. Some of the listed properties play an important role in battery management systems (BMS) in, for instance, electric and hybrid electric vehicles (see figure). The more ...

1D Plane Slider Bearing

This benchmark model computes the load-carrying capacity of a one dimensional hydrodynamic slider bearing. The results are compared with analytic expressions obtained by solving the Reynolds equations directly in this simple case.