The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Fatigue Analysis of a Non-Proportionally Loaded Shaft with a Fillet

This example shows how to perform a High Cycle Fatigue (HCF) analysis with a non-proportional load history caused by a transversal force and a torque which are applied in different combinations. Three different fatigue models (Findley, Matake, and Dang Van) are compared.

Pacemaker Electrode

This model, dealing with the current and potential distribution around one pair of electrodes, demonstrates how to synchronize and modify geometry in Inventor by using the LiveLink interface.

Fine Chemical Production in a Plate Reactor

Plate reactors running under continuous conditions have emerged as candidates to replace batch reactors, primarily in fine chemicals and pharmaceuticals production. One of the advantages of the plate reactor design is that it allows for efficient temperature control of the reacting fluid. For instance, this means that the heat released from strongly exothermic reactions can be readily ...

GEC CCP Reactor, Argon Chemistry, 1D

The NIST GEC CCP reactor provides a platform for studying capacitively coupled plasmas. Even the simplest plasma models are quite involved so a 1D example helps in understanding the physics without excessive CPU time. The problem has no steady-state solution, although a periodic steady-state solution is reached after a suitable number of RF cycles (usually >1000).

Electrical Heating in a Busbar

This tutorial model of the Joule heating effect in a busbar demonstrates how to synchronize an assembly between Creo Parametric and COMSOL, how to modify the geometry from COMSOL, and how to run a geometric parametric sweep.

Accelerated Life Testing

Fatigue testing of nonlinear materials with creep mechanism is a time consuming process. In accelerated life testing the experiment time is greatly reduced by subjecting the material to testing conditions in excess of the operating one. In the model an aggressive thermal load cycle is simulated and its effect on the fatigue life of a solder joint is examined. This example demonstrates how to ...

Modeling a Biconical Antenna for EMI/EMC Testing

Biconical antennas are popular for very high frequency (VHF) measurement because they support a wide frequency range. They are also useful for electromagnetic compatibility (EMC) testing where the antenna can be used as an RF source in susceptibility or immunity test. This model simulates a biconical antenna made of lightweight hexagonal frames that are preferred over solid cones for ...

Truck Mounted Crane Analyzer

Many trucks are equipped with cranes for handling loads. Such cranes have a number of hydraulic cylinders that control the motion of the crane. These cylinders and other components that make up the crane are subjected to large forces when handling heavy loads. In order to determine the load-carrying capacity of the crane, these forces must be computed. In the Truck-Mounted Crane Analyzer app, a ...

Kirsch Infinite Plate Problem

This model describes a static stress analysis to obtain the stress distribution in the vicinity of a small hole in an infinite plate. The model is a classic benchmark and is described in Mechanics of Material, by D. Roylance. The stress level is then compared with the theoretical values.

Electrodynamic Bearing

This model illustrates the working principle of a passive electrodynamic bearing. An electrically conducting rotor rotating in a magnetic field produced by a permanent magnets induces eddy currents on the conducting rotor. The eddy currents, in turn, produce a magnetic field that opposes the magnetic fields by the magnets and induces a force that opposes the motion of the rotor. The radial ...