The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Schottky Contact

Schottky Contact This benchmark simulates the behavior of an ideal Schottky barrier diode made of a tungsten contact deposited on a silicon wafer. The resulting J-V (current density vs. applied voltage) curve obtained from the model under forward bias is compared with experimental measurements found in the literature

Wavelength Tunable LED

This application computes the emission properties of a AlGaN/InGaN LED. The emission intensity, spectrum, and efficiency are calculated for an applied voltage or as a function of voltage over a selected range. The indium composition in the light-emitting InGaN region can be varied in order to control the emission wavelength. When the emission occurs within the visible spectrum the corresponding ...

Heterojunction 1D

This one-dimensional model simulates three different heterojunction configurations under forward and reverse bias. The model shows the difference in using the continuous quasi-Fermi levels model as opposed to the thermionic emission model to determine the current transfer occurring between the different materials creating the junction under bias. The energy levels obtained with the model are ...

Surface Trapping in a Silicon Nanowire Gate-All-Around Device

A gate-all-around MOSFET consists of a nanowire with a gate electrode wrapped around the circumference. Since the entire nanowire forms the channel, this configuration provides the best possible electrostatic control of the channel and offers a good candidate for the miniaturization of MOSFETs. This model analyzes a silicon nanowire gate-all-around device, with different trap densities at the ...

Small Signal Analysis of a MOSFET

This model shows how to compute the AC characteristics of a MOSFET. Both the output conductance and the transconductance are computed as a function of the drain current.

Si Solar Cell 1D

This tutorial model uses a simple 1D model of a silicon solar cell to illustrate the basic steps to set up and perform a semiconductor simulation with the Semiconductor Module. A user-defined expression is used for the photo-generation rate and the result shows typical I-V and P-V curves of solar cells. The carrier generation mechanism from the photovoltaic effect is not modeled in detail. ...

MOSFET with Mobility Models

This model shows how to add several linked mobility models to the simple MOSFET example.

DC Characteristics of a MESFET

In a MESFET, the gate forms a rectifying junction that controls the opening of the channel by varying the depletion width of the junction. In this model we simulate the response of a n-doped GaAs MESFET to different drain and gate voltages. For a n-doped material the electron concentration is expected to be orders of magnitude larger than the hole concentration. Accordingly, it is possible to ...

Programming of a Floating Gate EEPROM Device

This model calculates the current and charge characteristics of a floating gate Electrically Erasable Programmable Read-Only Memory (EEPROM) device. A stationary study demonstrates the effects of varying the charge stored on the floating gate by computing Current-Voltage curves as a function of the control gate voltage for two different amounts of stored charge. Time dependent studies are then ...

Si Solar Cell with Ray Optics

The Si Solar Cell with Ray Optics app combines the Ray Optics Module and the Semiconductor Module to illustrate the operation of a silicon solar cell for a specific date and location. The Ray Optics Module computes the average illumination for a date and location that are chosen by the app's user. Then, the Semiconductor Module computes the normalized output characteristics of the solar cell ...