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Abstract:  

The present work formulates the dynamics of 
a slender structure as a long beam.  This results 
in a PDE that is fourth-order in space, and 
second order in time.  In COMSOL the coupling 
method is used to decompose this problem into 
two second-order equations, one for 
displacements, and one for bending moments, 
which are then solved using the PDE, 
coefficient-mode approach;  the eigenvalue 
solver is used to obtain frequencies and mode 
shapes. 

For verification of approach, a simply 
supported uniform beam is considered, where the 
descriptive PDE’s are rendered non-dimensional 
in terms of scaled variables, and for a beam 
length of 1.  COMSOL computation then results in 
a fundamental lowest-order frequency that 
exactly matches the analytical result of π2.   
 
Keywords: Slender, structures, dynamics, 
vibration, PDE, beams. 
 
1. Introduction 

A variety of applications involve the 
dynamics or vibration of  “slender structures” 
where the length of the structure is much greater 
than the lateral dimension.  This may apply to 
tall buildings, or to process structures where 
slenderness ratios of 50 or more are not unusual.  
These structures may be subjected to various 
types of dynamic forcing that result in 
deformations and stresses.  Therefore, it is 
important to determine characteristic, or natural 
frequencies of the structures.  Because of the 
slenderness, these structures are amenable to 
modeling by one-dimensional beam-theory. 

A slender circular vessel is considered where 
frequencies and mode shapes are determined 
with the eigenvalue solver.  Changes in boundary 
conditions from a multiply-supported continuous 
beam have large effects upon the eigenvalues.  
Also, separate “free-floating” masses are coupled 
to the structures, and the behavior investigated.  
The use of beam theory in conjunction with the 
COMSOL PDE/eigenvalue solver is very 
effective.  Solutions are very rapid, and the 
effects of parameters are easily determined. 

 
 

2. Problem Formulation 
In essence, very slender structures deform 

laterally as a beam, subject to various forces and 
constraints.  Thus, beam theory may be 
employed to determine basic characteristics.  For 
the beam mass in Fig. 1, let V = shear force, q = 
load per unit length, ρ = density, and A = cross-
sectional area; 
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Figure 1:  Problem Definition. 

 
then application of F = ma yields the force-
balance 
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Dividing through by dx, this becomes the Euler 
beam equation, or the partial differential 
equation1: 
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where the moment, M, is related to the deflection 
curvature by1
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Thus, combining (1) and (2), we have the fourth-
order differential equation for deflection, y, in 
terms of x and t: 
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In particular, if the load is q = 0, we obtain the 
eigenvalue equation 
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Here it is seen that y can be multiplied by any 
constant and still satisfy (3b); therefore, an 
eigenvalue solution gives only relative 
magnitudes, not absolutes. 
 In some situations, the beam may be 
connected to a sloshing material that has mass 
but no bending restraint, such as a dense fluid in 
a thin tube.  In this case the interactive sloshing 
force in (3a) may be written as  

)()( yzcyzkq ss && −+−=   (3c) 
Where ks is an elastic constant with units of 
pressure, and cs is a damping constant with units 
of viscosity; the equation of motion for the slosh 
mass is then 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

+−=
∂
∂

t
z

t
yczyk

t
zm sss )(2

2
    (3d) 

Where ms = ρsAs is the slosh mass per length.  
The slosh natural frequency is then ωs = √ks/ms 
and the critical damping is cs,c = 2√ksms; if this 
represents a fluid with viscous effects, only, with 
ks = 0, then (3d) has no resonance frequency. 
 
2.1 COMSOL Implementation 

In COMSOL, the time-dependent one-
dimensional equation can be solved: 
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where u is a vector of variables, fa is the forcing 
function, and ea, da, ca and a are coefficients.  If 
this system has harmonic solutions, then 

andutu 222 / λ=∂∂ utu λ−=∂∂ / , where λ are 
the eigenvalues to be determined; for fa = 0, (4a) 
is then written as 
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Equations (4b), can be solved directly in 
COMSOL using the eigenvalue solver.  For the 
present model, the equations in eigenvalue form 
are 
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For the solution of these equations, the frequency 
in Hz is given by f = -iλ/2π where 1−=i . 

For testing this model in COMSOL on a beam 
of unity length it is convenient to scale ξ = x/L, η 

= y/L, m = ML/EI, and τ = t/tc, where tc is the 
time constant to be determined; then for constant 
section properties, EI, we obtain 
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where the time constant is 
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The coupled PDE’s, (6a) and (6b), can be solved 
directly in COMSOL using the eigenvalue solver.   
 
3. Results  
 
3.1 Scaled, Non-dimensional Test Beam 

Consider a simply-supported beam of unit 
length; then, Eqns.(6) with the boundary 
conditions, η = 0 and m = 0, at both ends, yield 
the blue mode-shape in Fig. 1 with an eigenvalue 
of -9.8696i, or a non-dimensional frequency of 
9.8696, which is precisely  π2 of the exact 
solution2.  For a cantilever beam with boundary 
conditions, η = 0 at ξ = 0, and m = 0 at ξ = 1, the 
red mode-shape in Fig. 1 is obtained with a non-
dimensional frequency of 3.515, which also 
corresponds to an exact solution2. 

 

 
Figure 2:  Mode Shapes for Scaled Beam. 

 
3.2 Continuous Beam 

A beam which has multiple supports along 
its span is referred to as a “continuous beam”.  
Such cases are not easily analyzed analytically; 
however, with COMSOL and the beam 



approximation, solutions are quickly obtained.  
Continuous beam geometry occurs for the tubes 
of heat exchangers which may execute damaging 
vibrations due to vortex shedding3; here, the 
natural frequencies of the tube/support system 
seek to avoid the critical vortex shedding 
frequencies. 

As an example, a 40 mm dia. by 1.9 m long 
tube was modeled as a half-tube, with profile 
shown Fig. 2(a):  

 
Figure 3(a):  Heat Exchanger Tube Model. 

 
The tube, clamped at one end and with 3 
supports, was meshed and solved in 3-D using 
the COMSOL-structural and eigenvalue solver; the 
mode-shape is shown in Fig. 2(b):  
 

 
Figure 3(b):  Fundamental Mode of 3-D Tube. 
 
where the fundamental eigenvalue and frequency 
were -565.6i and 90.0 Hz.  The corresponding 
beam solution is shown in Fig. 3(c): 

 
Figure 3(c): Fundamental Mode of Continuous Beam. 
 
where the fundamental eigenvalue and frequency 
were -551.5i and 87.8 Hz.   

Although the structural model was 
convenient to use in this model, for longer (more 
slender) objects, the beam model is more 
convenient and faster running.  For example, Fig. 
4 shows a 7 m long continuous beam with 7 
supports; its fundamental eigenvalue and 
frequency were determined as  -356.8i and 56.8 
Hz (blue mode shape), and the first harmonic 
were -418.2i and 66.6 Hz (red mode shape):  

 
Figure 4:  Continuous Beam Vibration Modes. 
   
In Figs. 3 and 4, as in all modal analysis, it is 

the shapes and frequencies that are important. 
The actual displacement shown is arbitrary 
without a forcing function. 

 
3.2 Effect of Sloshing 

When a liquid or other substance 
dynamically interacts with the structure, then the 
combined natural frequency of the system is 
changed.  For input to the PDF solver, it is 



convenient to write equations (1) to (3) in the 
matrix form: 
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where the prime and dot denote partial 
differentiation with respect to x and t, 
respectively; then the matrices correspond to the 
COMSOL coefficients c, a, da and ea. 
 For example, if for the above model ks = 0.1 
psi (~700 Pa) and cs = 0.001 Pa.s, then the 
fundamental eigenvalue is changed to 0.00015-
14.4i, with a frequency of ~2.2 Hz, and the 
displacement of z (red curve) is orders greater 
than y (blue curve): 

 

 
Figure 5:  Sloshing Mode Shape. 

 
 
4. Conclusions 
 

The dynamics of slender structures was 
formulated in terms of conventional beam 
theory, which resulted in a fourth-order PDE;  
these equations were entered into the COMSOL 
PDE coefficient form as two coupled second-
order equations.   

For a scaled simply-supported beam, and a 
cantilever beam, it was shown that the COMSOL 
solution for fundamental natural frequency 
corresponded precisely to published analytical 
results.  Furthermore,  a continuous-beam model 
was found to be in excellent agreement with a 
two-dimensional structural model.  For very 

slender structures with multiple supports, the 
beam model was expedient to use with the 
COMSOL PDE and eigenvalue solvers. 

Modeling was extended to structures 
connected to a sloshing or free-moving mass.  It 
was shown that such connection can lead to 
significant changes in the combined vibration 
frequency.  
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