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Abstract: Characterization of deformable 
particles, e.g. cells, has numerous applications in 
science and diagnostics. Recently, particle 
passage through constrained square 
microchannels has been proposed to characterize 
particles based on their passage velocity. 
Nevertheless, there is no clear understanding of 
how the physics in this system interact. Recently 
we proposed a model that takes into 
consideration the gap between the walls and the 
particle and that regulates the pressure drop that 
pushes the particle through the microchannel. 
Here we quantify the effects of the gap flow by 
simulating the passage of a solid deformed 
particle moving at different velocities in a 
microfluidic channel. The fundamental 
understanding gained through this work could 
explain differences on the experimental results 
already available on particle passage through 
micro channels and filters. 
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1. Introduction 
 
The behavior of particles in flows has been long 
used to characterize and sort particles suspended 
in fluids, e.g. centrifugation is routinely used to 
separate biological samples of multiple 
constituents. Recently, the ability to build 
microchannels, a byproduct of the 
miniaturization techniques used in electronics, 
has led to the creation of highly controllable 
environments to characterize particles. These 
new microenvironments have been used to 
characterize droplets, microspheres and cells1. 
 
One of the most studied particles in microfluidic 
environments are cells. Recently, cell passage 
through constrained microfluidic environments 
has been proposed as a tool for characterization 
of cells. Cell passage time and cell velocity has 
been used as an indirect tool for measuring cell 
mechanics, which is an important biophysical 

property since cell stiffness can be related to 
disease states such as cancer and malaria2. It has 
been observed that the rigidity of cells increase 
the cells transit time; the stiffer the cell the 
slower it will travel through a microfluidic 
channel. Nevertheless it is unclear how is that 
stiffness is related to the other cell passage 
variables, how the physics involved are related 
and to what extent and proportion they affect the 
cell transit variables. Further even the role of the 
cell’s deformed geometry is unclear. 
 
Here we will examine the flow forces that arise 
exclusively from a deformed particle traveling 
through a microchannel at a velocity different 
than the average flow velocity. The present 
investigation has the objective to highlight and 
isolate the contributions and effects of the fluid 
surrounding the particle, which can be used to 
clarify the nature of the particle-channel 
interactions in the case of cells. 
 
2. Governing Equations 
 
The equation used during the simulation of the 
deformed particle traveling through a 
microfluidic channel are the full Navier-Stokes 
equations 
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where !  is the fluid density, u
!

 is the velocity 
vector field, !  is the fluid viscosity, p  is the 

scalar pressure field, and F
!"

 is the volume force 
vector field. 
 



 

Here, we kept the inertia terms to check if they 
have any significant contribution at Reynolds 
numbers of the order ~0.2.  
 
Finally, we prescribed the velocities at all the 
boundaries as described in the geometry section. 
 
3. Numerical Model  
 
In order to simulate the particle passage we 
created a channel geometry of 6 µm-square 
cross-section and 50 µm length. At the middle of 
the channel we subtracted a pill-shape volume, 
which represents the deformed particle.  The pill 
has rounded front and back ends and leaves a gap 
between the pill and the channel’s corners. Also 
the pill intersects, i.e. touches, the channel walls, 
hence preventing flow passage at the channel 
walls but not the corners.  
 
Two types of corner gaps between the particle 
and the channel were explored: triangular and 
rounded. In both models the channel width, H, 
and the back and front particle radius, R2 = 2 µm, 
were kept constant.  
 
In the rounded gap model, the gap external 
radius, R1 = 0.5 µm, and particle length, Lp, were 
kept constant. In the simulations, the cell 
velocity (particle velocity) and the fluid flow 
(inlet velocity) are imposed through boundary 
conditions (Fig. 1). In terms of boundary 
conditions, a uniform velocity was applied to the 
inlet and at the outlet the pressure was set to 
zero. The effects of the particle moving at a non-
zero velocity, 𝑢!"#$%&'(, were implemented by 
changing the boundary conditions at all the 
remaining channel boundaries while keeping the 
velocities at the particle surfaces equal to zero, 
i.e. 
 

𝑢!!"" = −𝑢!!"#$%&' , 
 
and 
 

𝑢!!"#$%&'_!!"" = 0, 
 
which implies that the inlet velocity is 
 

𝑢!!"#$ = 𝑢!!"#$ − 𝑢!!"#$%&' . 
 
In the triangular gap model, the gap side, R1, and 
particle length, l, were modulated. For this model 
we use an isosceles triangular corner geometry 
whose dimensions were varied from 0.5 to 2.5 

µm (Fig. 2). Further, we varied the particles 
length from 7 to 20 µm. In this case, the particle 
velocity was set to zero, i.e. 
 

𝑢!!"" = 0, 
 
and 
 

𝑢!!"#$%&'_!!"" = 0, 
 
which implies that the inlet velocity is 
 

𝑢!!"#$ = 𝑢!!"#$ . 
 
 

 
Figure 1. Particle model with round gap. 
 
 

 
Figure 2. Particle model geometry with triangular 
corners. 
 
 
4. Results and Discussion 
 
A representative plot of the pressure 
distribution is shown in Fig. 3. From the plot 
we can observe that, upstream and 
downstream the particle, the pressure is 
roughly uniform. Further, the pressure drop 
is roughly linear through the gaps between 
the particle and the channel. Therefore the 



 

pressure drop due to the particle presence is, 
to any practical purpose, not affected by the 
particle’s back and front geometry. At the 
gap, the cross sectional channel area 
becomes less than 1% the area of the open 
channel, therefore the hydraulic resistance of 
this section is much larger than that of the 
unoccupied channel. More precisely, since 
the viscous hydraulic resistance scales as 
~1/a4, where a is the characteristic channel 
size, the resistance per unit length of the gap 
is 1000 times larger that the resistance per 
unit length of the channel. Therefore the 
geometry elsewhere is unimportant. 
 

 
Figure 3. Representative pressure field distribution 
and boundary conditions applied to a static particle 
inside a square channel. 
 
Round Gap Model 
 
We found that for this model, for Reynolds 
numbers up to 0.2, the pressure difference 
between the particle's back and front scales 
linearly with the inlet velocity (Fig. 3), therefore 
the effects of inertia are not significant, even 
when the Reynolds numbers are not much more 
smaller than one. Hence, viscous dissipation 
should suffice to describe the forces involved 
during particle passage. 
 

 
Figure 3. Pressure difference between the back and 
front ends of the particle with round gaps (static 
particle) as a function of the inlet velocity. 

 
Additionally, the pressure difference between the 
cell's back and front decreases approximately 
linearly with the particle's velocity till the 
particle’s velocity becomes approximately equal 
to the average inlet velocity (Fig. 4). Hence, 
 

𝑃 = 𝐾! ∗ 𝑢!"#$% 1 −
𝑢!"#$%&'(
𝑢!!"#$

, 

 
where P is the pressure difference between the 
back and the front of the particle. 
 

 
 
Figure 4. Pressure difference between the back and 
front ends of the particle with round gaps (static 
particle) as a function of particle velocity. 
 
 
Triangular Gap Model 
 

Finally, we studied the effects of the 
variation of the particle’s dimensions. First we 
explore the effects of the particle’s length 
(Fig.5). As expected from a viscous dissipation 
model, the pressure drop increased linearly with 
particle length. Nevertheless, there is a small 
offset of the length-pressure curve; the pressure 
only starts to grow after an initial length, ~1.5 
µm. A fraction of the total length does not induce 
a significant pressure drop since that length is 
lost into creating the back and front parts of the 
particle, which induce small resistances when 
compared to the gap section. 



 

 
Figure 5. Pressure difference between the back and 
front ends of the particle with triangular gaps (static 
particle) as a function of particle length. 
 
Further, we studied the effects of the corner gap 
size between the particle and the channel walls 
(Fig. 6 and Fig. 7). The pressure difference 
between the particle's back and front decreased 
as the gap size increased. The pressure dropped 
as ~1/Rn, where R is the length of one of the 
sides of the triangle and n is a number between 
3.5-4; which agrees with the expected behavior 
of a highly viscous hydrodynamic resistance. 
 
5. Conclusions 
 
In this paper we developed a numerical model 
that describes the basic forces induced by a large 
deformable particle flowing through a 
microfluidic channel.  We found that, at least, up 
to Reynolds ~0.2, the system can be described as 
a highly viscous problem without significant 
departures caused by inertia. Further, the 
pressure drop across the particle is caused by the 
gap between the particle and the channel without 
significant contribution from the front and back 
ends of the particle. Hence the induced pressure 
drop is directly proportional to the particles 
length and inversely proportional to the gap size. 
 
Finally, the pressure drop across the particle can 
be calculated as 
 

𝑃 = 𝐾!
𝑙
𝑅!!

∗ 𝑢!!"#$ 1 −
𝑢!!"#$%&'
𝑢!!"#$

, 

 
where 𝐾! is a function of the fluid viscosity and 
exact gap geometry. 
 

 
Figure 6. Pressure difference between the back and 
front ends of the particle with triangular gaps (static 
particle) as a function of gap size. 
 

 
Figure 7. Pressure difference between the back and 
front ends of the particle with triangular gaps (static 
particle) as a function of gap size and particle length. 
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