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Introduction @

NASA's Advanced Exploration Systems Program ...

... is pioneering new approaches for rapidly developing prototype systems,
demonstrating key capabilities, and validating operational concepts for future
human missions beyond Earth orbit.

The Atmosphere Resource Recovery and
Environmental Monitoring Project ...

... main objectives are to mature integrated AR and environmental monitoring
(EM) subsystems derived directly from the ISS AR subsystem architecture

... reduce developmental and mission risk, improve reliability, lower lifecycle
costs, and demonstrate operational process design and system architectural
concepts for future human missions beyond Earth orbit.

http://www.nasa.gov/directorates/heo/aes/index.html

Perry, J. L., Abney, M. B., Knox, J. C., Parrish, K. J., Roman, M. C., and Jan, D. L. "Integrated Atmosphere Resource Recovery and Environmental
Monitoring Technology Demonstration for Deep Space Exploration," International Conference on Environmental Systems. AIAA, San Diego, 2012.



Approach - CO, Removal, Bulk Drying, and Residual Drying @

Characterize candidate sorbents and compare directly with state-of-the-art
sorbents. Select promising sorbent candidates for life support process of
interest.

Develop new or modify existing mathematical models and computer
simulations for process of interest.

Via simulation, optimize cyclic test configuration (e.g., canister design and
cycle parameters).

Fabricate test article and execute test series. Evaluate sorbent efficacy for
go/no go to next larger scale. Validate and refine simulation.

For promising sorbents, repeat steps 3 and 4 while increasing scale until full-
scale for the process of interest is attained.

Incorporate the full-scale system into the integrated Atmosphere
Revitalization test configuration and evaluate via integrated testing.

Provide technology solution to spacecraft flight system developer.



1-D Model Equations
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Breakthrough Test Apparatus @

Adsorbent Fixed-bed
Pellet radius Ry,= 1.02 mm Bed height L=0254m
Particle density ps=1180 kg m™ Bed mass m=3%g
Skeletal density psi = 2040 kg m*? Bed internal diameter R;=47.6 mm
Heat capacity cp; =920 kg ' K! Column wall thickness /= 1.59 mm
Langmuir surface area  A; =463 m’ g Wall heat capacity Coe =475 T kg' K!

Wall density pw=T833 kg m?




1-D Results — Carbon Dioxide
on Zeolite CaA (5A
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(left) and temperature history (right). Experimental data are shown as symbols. Simulation data at the inlet
(2%), midpoint (50%), and exit (98%) are shown as lines. Three values for axial dispersion (units are m’ s')
are compared in these figures, however, their influence is negligible on simulation results.
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Figure 3. Breakthrough test data and 1-D simulation results for H:O on zeolite CaA. Concentration history

(left) and temperature history (right). Experimental data are shown as symbols. Simulation data at the inlet
(2%), midpoint (50%,), and exit (98%) are shown as lines.



2-D Model Equations

- Ftee and Porous Media Flow, including Darcy and Forchheimer terms (Eq. (10))
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2-D Model Results — Porosity
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2-D Model Results — Carbon
Dioxide on CaA

Gas Concentration (molm~3)
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Figure 4. Breakthrough test data and 2-D axisymmetric simulation results for CO: on zeolite CaA.
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2-D Model Results — Water
. Vapor on CaA
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Isothermal Bulk Desiccant —
Subscale Test Article

H20 Inlet and Removal
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Perry, J., Howard, D. F., Knox, J. C., and Junaedi, C. "Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned
Spacecraft Atmospheres: Applications and Testing 2008/2009," International Conference On Environmental Systems. SAE, Savannah, GA, 2009.



Isothermal Bulk Desiccant —
3-D Model
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Figure 20. Temperatures (in K) on the bed surfaces at the end of the simu-
lation. Counting from left to right, columns | and 3 have wet air flowing
downward and columns 2 and 4 have dry air flowing upward.

Figure 16. Meshed IBD 4-column model. The red
and blue regions are paired wet/dry inlets/exits of the
columns. The size of the IBD bed in the three dimen-
sions are shown in inches.



Isothermal Bulk Desiccant —
3-D Model Results
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Figure 17. Temperature comparison. The ‘in’data (upper left and bottom
right curves) are used as boundary conditions in the simulation. The values
were taken at the center-line of the left red bed in Fig. 17, on the inlet and
exit surfaces. Note the inlet and exit of cell B are spatially fixed, so that the
‘inlet’is where wet air enters, but dry air exits.
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Figure 19. Efficiency, n, of the simulation compared to experiment over

the last half-cycle. During the ‘controlied’ period of each half-cycle, the dew

point measuring device is calibrating, so the resuiting concentration and par-
tial pressures are uncertain.



Microlith® Residual Humidity
Sorbent Design
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Figure 3. A simplified Microlith-based radial flow adsorber design consisting of a “jelly-roll” coil of sorbent-

coated Microlith screens and sorbent-coated insulating meshes (A) in a radial flow configuration (B).
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Figure 4. (a) External and (b) Internal cross-sectional views of the

regenerable Microlith-based radial flow adsorber design concept. Time (min)

Junaedi, C. et. al., "Compact, Lightweight Adsorber and Sabatier Reactor for CO2 Capture and Reduction for Consumable and Propellant Production,"
International Conference on Environmental Systems. AIAA, San Diego, 2012.
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Figure 22. Jelly Roll Exit Velocities
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Linear Microlith: Velocity Results @

Surface: Dependent variable q (mollm3)
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Packed Bed Vacuum Desorption @
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Conclusions @

Flat NASA budgets suggest innovative approaches to sorption system
development

For AES ARREM CO, Removal, testing is being supplemented with multi-
dimensional modeling and simulation to reduce costs and optimize hardware

designs

Empirical determination of mass transfer coefficients using fixed bed models in 1D
and 2D

Application of the fixed bed model in 3D to simulate a cyclic IBD sub-scale test
Optimization of heat transfer for development of a Isothermal Bulk Desiccant (IBD)

Studies of the Microlith® Adsorber flow pattern have been used to troubleshoot
performance problems and to obtain a successful solution to flow maldistribution

Application of the fixed bed model and development of the appropriate vacuum
system equations for Vacuum Desorption applications

Modeling and simulation efforts will continue to maximize the effectiveness of
AES ARREM CO, Removal system designs





