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Abstract: Pressure-drop experiments were 

conducted for the turbulent, compressible flow of 

air in a small, slender tube, and modeled with 

COMSOL heat transfer module, and analytically.     

A scalar integration variable is introduced which 

integrates the mass velocity [kg/m
2
s] over the 

inlet area and iteratively equates this to the input 

mass flow [kg/s]. For computation, the 

temperature specification is related to the local, 

calculated pressure through the isentropic 

relationships.  Additionally, based on the 

numerical results, an analytical 1-D model is 

derived.   The results show significant density 

variations along the tube, and indicate choking at 

the outlet (Ma ~ 1) for the highest flow.  For the 

adiabatic conditions, there is excellent agreement 

with the experimental data for a wide range of 

flows, though excluding near-choking conditions 

at the outlet. 

Keywords: compressible air-flow, COMSOL 

scalar integration variable, experimental data,  

analytical approximation, specified mass flow. 

 

1. Introduction 
 

The compressible flow of gases at elevated 

temperatures and pressures is important in many 

industrial applications.  However, it is 

impractical to conduct experiments at the 

application conditions; therefore, “scale-up” of 

experimental results in atmospheric air to other 

gases at higher temperatures and pressures 

requires numerical modeling.   Although 

numerical modeling can be done directly, 

experimental verification is important to assure 

accuracy.  Usually, process applications are 

specified in terms of mass flow [kg/h]; hence, the 

experimental measurements are scaled for the 

mass flow of air. 

In this paper, the air-flow experiment is 

described, and COMSOL heat transfer module is 

used with the k-ε turbulence theory to model the 

axis-symmetric flow and pressure fields.  

Additionally, based on the numerical results, an 

analytical 1-D model is derived. 

The usual boundary conditions for flow 

simulation are specified pressure at the outlet 

(here atmospheric), and velocity at the inlet; 

however, for inlet condition specified as mass 

flow, the unknown pressure at the inlet is needed 

to determine the velocity.  Therefore, a scalar 

integration variable is introduced which 

integrates the mass velocity [kg/m
2
s] over the 

inlet area and iteratively equates this to the 

specified mass flow, mdot[kg/s].  

For computation, the COMSOL built-in 

library properties for air were used initially, 

which, with a constant temperature, resulted in 

the isothermal compression of the flow.  

However, the high-velocity air-flow is closer to 

adiabatic conditions; thus, the temperature 

specification was related to the local, calculated 

pressure through the isentropic relationships.   

The results of the COMSOL computation 

show significant density variation along the tube, 

and indicate choking at the outlet (Ma ~ 1) for 

the highest flow.  For the adiabatic conditions, 

there is excellent agreement with the 

experimental data for a wide range of flows, 

though excluding near-choking conditions at the 

outlet for the highest flow case. 

 

2. Experimental Approach 
 

In order to determine the pressure drop 

across the test piece, compressed air was forced 

through the slender tube via a flexible hose, 

using a rotameter and pressure gauge for the 

measurements, as shown in Fig. 1 below: 
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Figure 1:  Test Setup 

 

To correct for the pressure loss in the hose 

and fittings, a test was also run without the tube 



 

(test section) connected.  In this way, when the 

comparative pressures are subtracted, the 

pressure drop for the test section, only, is 

obtained. 

Using a rotameter [60-600 SCFH+/-12 (2%)] 

and digital pressure gauge [0-30psig+/-0.3psi 

(1%)], tests were conducted from 100-400 SCFH 

by 50 SCFH increments and pressures recorded; 

tests with these conditions were repeated without 

the test section installed.  

The observed rotameter readings were 

corrected for pressure using equation (1a): 
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    (1a) 

where: 

Q1= observed flow meter reading; 

Q2= standard flow corrected for pressure; 

 P1= observed absolute pressure;  

 P2= standard  absolute pressure (1 atm); 

These corrected volumetric flows were then 

converted to kg/hr using equation (1b): 
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where ρ2 = is the density [kg/ft
3
] at  70

O
F and 

14.7 psia [0.03397 kg/ft
3
]. 

The pressure drop across the slender tube, 

only, was then calculated by subtracting the 

empty hose pressure drop: 

Tube Total EmptyP P P 
   (1c) 

Typically, in applications, it is the mass flow 

that is specified [kg/hr], rather than the 

volumetric flow; therefore, the above corrections 

were made.  The results are in the Appendix. 

 

 

 

3. Use of COMSOL Multiphysics 
 

 The axis-symmetric turbulent flow of air in a 

4.2mm x 150mm tube, having inlet and outlet 

plena, was modeled with COMSOL.  This 

geometry is shown in Fig. 2, where the flow is 

from left to right, with Uin as the plenum inlet 

velocity. 

 
Figure 2.  COMSOL Axis-symmetric Geometry 

 

The inlet plenum matches the experimental 

geometry, including a small radius at the tube-

entrance corner;  although quite small, the fillet 

had an important smoothing effect on the flow 

development and pressure drop, as indicated by 

the streamlines in Fig. 3. 

 

 
Figure 3.  Inlet Streamlines 

 

The inlet velocity is computed from a scalar 

integration variable, as shown in Fig. 4: 

 

 
Figure 4.  Scalar Integration Variable 

 



 

This shows that Uin is to be selected (by 

COMSOL) such that the function 

intop1(spf.rho*w)-mdot = 0; or, in other words, 

such that the integration operator 1 integrates the 

computed mass velocity ρ▪w over the inlet area 

and iteratively sets the value to the specified 

mass flow rate, mdot.  Although this procedure is 

automatic in the CFD module, it was not 

available in the Heat Transfer module at this 

writing. 

 There is another important feature of the 

model:  because the rapid, compressible flow is 

adiabatic, the temperature and density along the 

tube varies.  Thus, the variables must be set as 

shown in Fig. 5, where p is the calculated 

pressure: 

Figure 5.  Setting of Variables. 

 

With the scalar integration process in place, 

the inlet mass flow can be specified; thus, at a 

mass flow rate of 10 kg/h, the velocities appear 

as in Fig 6:  

 
Figure 6.  Velocity Distribution at 10 kg/h. 

  

At the inlet, there are smooth flow and boundary 

layer developments, shown in Fig. 7 for 10 kg/h: 

 
Figure 7.  Inlet Flow Distribution. 

 

It is seen that at this mass flow, there is 

substantial velocity of ~200 m/s in the tube.  

There is also substantial pressure conversion, as 

shown by the gauge pressures in Fig. 8: 

 

 
Figure 8.  Inlet Pressures [psig]. 

 

 At the outlet there is flow separation, and 

pressure recovery, shown in Figs. 9 and 10: 

 

 
Figure 9.  Outlet Flow Distribution. 



 

 
Figure 10.  Pressure Recovery at Outlet. 

 

In summary, the axial pressure profiles for four 

mass flows, 5 - 20 kg/h, are as shown in Fig. 11: 

 
Figure 11.  Pressures for mdot = 5 to 20 kg/h. 

 

The highest flow (light green curve) shows 

instability at the outlet because of choking 

conditions.  The curvature is the result of flow 

acceleration due to density variations. 

 

4. Comparison of Results. 

 

In Fig. 12 is shown the overall pressures.  

It is seen that there is excellent agreement 

between experiment and computation at the 

lower flows, which emphasizes the accuracy 

of the experimental approach, and of the 

applicability of the k-ε turbulence model.  

At the higher flows, the flow is becoming 

choked at the outlet, and the mildly-

compressible COMSOL model is strictly not 

applicable; additionally some experimental 

error may be present for this case.   

Figure 12.  Overall Pressure Drop Results. 

 

(the analytical data are discussed subsequently). 

 

 The exit flows are illustrated here for 15 kg/h 

 

 
Figure 13.  Exit Flow at 15 kg/h. 

 

and for the choked condition at 20 kg/h 

 

 
Figure 14. Exit Flow at 20 kg/h. 

 

It is seen that the core velocity at 15 kg/h is 

at Ma = 1, and that this condition is exceeded at 
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20 kg/h; the latter exhibits the “diamond” 

patterns associated with supersonic nozzles. 

 

5. One-dimensional Theory. 

 

Considering an axial element of fluid, the 

pressure gradient is stated as in (2a): 

  (2a) 

Where G = mdot/A is the (constant) mass 

velocity, and f = 0.3164/Re
0.25

 is the Blasius 

friction formula for smooth walls.  Here, Re = 

GD/μ; except for the viscosity, the Reynolds 

number and friction factor are also constant 

along the length.  The adiabatic compression 

relation between the pressure and density are as 

follows: 

      (2b) 

where subscript 0 denotes a reference value, 

which can be taken as the approximate inlet 

conditions.  Thus, (2a) is written as 

   (2c) 

The integration of (2c) over δ < x < L, where δ is 

a short distance from the inlet, yields 

    (3a) 

However, these exponential pressure ratios are 

just the adiabatic temperature ratios; thus, (3a) is 

 
    (3b) 

Hence, the adiabatic temperature at location L is 

   (3c) 

Where V0 = G/ρ0 and a ρ0 was factored in for 

convenience.  Once the temperature at x = L is 

determined, the pressure is obtained from pL = 

p0(TL/T0)
γ/(γ-1)

, and the friction pressure loss as 

follows: ∆pf = pδ - pL, where pδ is the pressure 

after the inlet acceleration loss.  

The pressure curves from COMSOL (Fig. 

11) shows the (mostly) linear friction part in the 

center, the  acceleration pressure drop at the 

inlet, and the pressure recovery at the outlet.  

Hence, the recovery at the exit is stated as 

   (4a) 

where there is conversion of 1 velocity head; 

Similarly, for the inlet (where a conversion is 

included in Kin): 

    (4b) 

By comparison with the COMSOL data for 

15 kg/h, as shown in Fig. 11, the inlet and outlet 

head-loss coefficients are determined as Kin = 1 

(conversion) + 0.70 and Kout = 0.65.  Keeping 

these values fixed, and determining the friction 

losses by the Blasius formula, the pressure drop 

data are as shown by the red squares in Fig. 12.  

It is seen that there is good agreement, except for 

the highest, choked flow rate. 

 

6. Conclusions 
 

Careful experiments and COMSOL modeling 

were performed for the compressible flow of air 

in a small slender tube.  Excellent agreement was 

found between the tests and models for moderate 

flows, corroborating the accuracy of the tests and 

the COMSOL k-ε turbulence model for this 



 

geometry.  Only at near-choking conditions was 

there divergence in the results. 

A special technique was employed in 

COMSOL in order to specify inlet mass flow.  

This is the quantity usually specified in process 

applications. 

Additionally, a 1-D analytical model was 

constructed which adds insight to the 

thermodynamic process of compressible flow; 

with inlet and outlet loss coefficients derived 

from one COMSOL model, this model also 

agreed well with the experiments. 
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