

Finite Element Modeling of Vasoreactivity Using COMSOL Multiphysics® Software

Jaimit Parikh, Adam Kapela and Nikolaos Tsoukias

9th October 2014

INTRODUCTION

- Microvascularture: Blood vessels < 150 μM
- Longitudinally arranged single layer of ECs surrounded by perpendicular arrangement of one or many layers of SMCs
- Role of Microcirculation:
 - Regulate blood flow
 - Tissue perfusion
 - Regulates blood pressure and responses to inflammation

SIGNIFICANCE

- High blood pressure: 1 in 3 adults in US. [1]
- Almost 3 of 4 patients that experience their first heart attack or stroke are hypertensive. [1]
- Peripheral vascular resistance is increased in virtually all models of hypertension and altered arteriolar tone can affect renal function and the ability of the kidneys to regulate blood pressure.

GOAL

Complex mechanisms at the molecular, cellular levels participate in the regulation of vascular resistance and hence the vessel tone.

Develop theoretical models to better understand mechanisms modulating Ca^{2+} and V_m dynamics that regulate vascular resistance, blood flow and pressure in health and in hypertension

In particular: Quantification and role localized Ca²⁺ signals via TRPV4 channels and localized NO signaling in vessel tone modulation

METHODS

STEP 1: Ion Channels

Fitting of current-voltage data for the individual channel provides a mathematical description for each channel

$$I_{\text{Kir}} = \frac{G_{\text{Kir,max}} \left(V_{\text{m}} - E_{\text{K}}\right)}{1 + e^{\frac{\Delta V - \Delta V_{\text{Kir,h}}}{v_{\text{Kir}}}}}$$
$$G_{\text{Kir,max}} = G_{\text{Kir}} \left(\left[K^{+}\right]_{\text{o}}\right)^{n_{\text{Kir}}}$$
$$\Delta V = V_{\text{m}} - E_{\text{K}}$$

METHODS

STEP 2:Single Cell Models

Incorporates major channels, pumps and accounts for balance of Ca²⁺, Na⁺, K⁺, Cl⁻, and IP₃

Emototthe Mals Cle I Clad do do de 1: 20 EQ D Est veed veed nos ingenses in general action en trial to meet mod les meetins systems

EC MODEL SET OF ODES

 $\frac{dP_{O,CaCC}(t)}{dt} = \frac{P_{O,CaCC,SS} - P_{O,CaCC}(t)}{dt}$

$$\frac{dV_{m}}{dt} = -\frac{1}{C_{m}} (I_{SOC} + I_{NSC} + I_{VRAC} + I_{CaCC} + I_{K_{ir}} + I_{IK_{Ca}} + I_{SK_{Ca}} + I_{NaK} + I_{NCX} + I_{PMCA})$$

$$\frac{dCa_{i}}{dt} = -\frac{I_{SOC,Ca} - 2I_{NCX} + I_{CaP} + I_{NSC,Ca} + I_{SERCA,S1} - I_{leak,S1} - I_{IP3R} + I_{SERCA,S2} - I_{CICR} - I_{leak,S2}}{2 \cdot F \cdot vol_{Ca}}$$

$$\frac{dCa_{S1}}{dt} = -\frac{I_{IP3R} - I_{SERCA,S1} + I_{leak,S1}}{2 \cdot F \cdot vol_{S1}}$$

$$\frac{dCa_{S2}}{dt} = -\frac{I_{CICR} - I_{SERCA,S2} + I_{leak,S2}}{2 \cdot F \cdot vol_{S2}}$$

$$\frac{dCa_{B}}{dt} = kB_{on} \cdot Ca_{i} \cdot (B_{T} - Ca_{B}) - kB_{off} \cdot Ca_{B}$$

$$\frac{dNa_{i}}{dt} = -\frac{I_{SOC,Na} + 3I_{NCX} + I_{NSC,Na} + 3I_{NaK} - 0.5I_{NaKCI_CI}}{F \cdot vol_{i}}$$

$$\frac{dK_{i}}{dt} = -\frac{I_{SKCa} + I_{IKCa} + I_{KIr} + I_{NSC,K} - 2I_{NaK} - 0.5I_{NaKCI_CI}}{F \cdot vol_{i}}$$

$$\frac{dCl_{i}}{dt} = -\frac{I_{NaKCI_CI} + I_{VRAC} + I_{CaCC}}{-1 \cdot F \cdot vol_{i}}$$

$$\frac{dIP_{3}}{dt} = Q_{GIP3} - k_{DIP3} \cdot IP_{3}$$

$$\frac{dQ_{GIP3}}{dt} = \frac{Q_{GIP3,SS} - Q_{GIP3}}{I_{IR}}$$

$$\frac{dQ_{GIP3}}{dt} = \frac{Q_{GIP3,SS} - Q_{GIP3}}{I_{IR}}$$

- 11 Nonlinear ODE
- -~ 60 Model parameters
- Values acquired from RMA-EC, other EC, other cell types

MICROPROPJECTIONS

Traditional transmission electron photomicrograph (x15,000) of the arterial wall [5]

Schematic of channels and cellular components localized in the microprojections

METHODS

STEP 3: FINITE ELEMENT EC-SMC MODEL

- Allow to examine spatiotemporal changes in Ca²⁺ and V_m dynamics.
- To incorporate exact geometries of microdomain structures like micorprojections and implement spatial localization of cellular components

- COMSOL Multiphysics

 Membrane Currents

 implemented as boundary

 conditions $-n.N_s = \frac{1}{z_s F} \sum_{\kappa} I_{s,\kappa}$
 - Electro-diffusion for ionic transport
 - Diffusion for second messenger

RESULTS

TRPV4 SPARKLET ACTIVITY

 $3 \mu m$

RESULTS

NO DIFFUSION DURING SMC STIMULATION

SUMMARY

- The developed models serves as a tool for assisting investigations on the regulation of vascular tone in health and disease, and development of rationale therapeutic strategies for disease like hypertension.
- Allows quantification and better understanding of Ca²⁺ dynamics regulation.
- Activation of single TRPV4 channel can result in few mM peak Ca²⁺ concentrations locally which may result in 8-10 mV hyperpolarization of SMC and vessel relaxation.'
- Localization of eNOS in the vicinity of MP may result in NO mediated feedback during SMC stimulation (i.e. PE, NE)
- Modulation of NO biovailability by Hbα is enhanced by the colocalization in the MP
- RBC perfusion will decrease the ability of Hbα to modulate NO levels and μM levels of EC Hbα are required for a significant modulation of SMC NO availability

REFRENCES

- 1. **AS**, **Lloyd-Jones DM et al**. **2012** Heart disease and stroke statistics--2012 update: a report from the American Heart Association. *Circulation* 125: e2-e220, 2012.
- 2. http://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_bloodpressure.htm
- 3. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6135a3.htm?s_cid=mm6135a3_w
- 4. **Tsoukias NM. et al.** A theoretical model of nitric oxide transport in arterioles: frequency- vs.amplitude-dependent control of cGMP formation. Am J Physiol Heart Circ Physiol 286: H1043-H1056, 2004.
- 5. **Tran CH. et al.** Endothelial Ca²⁺ wavelets and the induction of myoendothelial feedback. Am J Physiol Cell Physiol 302: C1226-1242, 2012.

ACKNOWLEDGEMENTS

Florida International University Biomedical Engineering Department

American Heart Association

National Institutes of Health

COMSOL CONFERENCE 2014

THANK YOU