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Abstract: Numerical simulations applied to 
blood flow together with the imaging processing 
advances are a powerful tool in the prevention 
and treatment of some diseases. The inclusion of 
real data in the numerical blood flow simulations 
allows the achievement of more realistic and 
accurate results. In the literature, these 
techniques are known as Data Assimilation (DA) 
techniques. In this work we solve a variational 
DA problem to numerically reconstruct the blood 
flow circulation inside a real artery, deformed by 
a saccular aneurysm obtained from medical 
images and then imported to COMSOL 
Multiphysics®. We propose a weighted cost 
function that accurately recovers both the 
velocity and the wall shear stress profiles. The 
robustness of such cost function is tested with 
respect to different velocity inlet profiles. 
 
Keywords: Data Assimilation, Optimal Control, 
Numerical Simulations. 
 
1. Introduction 
 

In this paper we propose a Data Assimilation 
procedure, which consists in solving an optimal 
control problem to numerically reconstruct the 
blood flow in a realistic saccular aneurysm.  This 
can be understood as a preliminary step, before 
including real data measurements in the 
simulations, which will allow to build a tool in 
order to be available to the medical community, 
contributing to the advancement in therapy 
prediction, training and expenses reduction. 

In the DA method we take into account the 
wall shear stress (wss), once it can be a measure 
associated to disturbed flow (see [1,7]), and we 
verify that this leads to a better precision in a 
posteriori measurements. We validate the 
robustness of the method with respect to 
different flow profiles. In this paper we model 
the blood flow as an incompressible and laminar 
fluid using the generalized Navier-Stokes system 
as written in (2). The Navier-Stokes system, 
derive from classical mechanics principles: the 
conservation of mass, the conservation of linear 

momentum and the conservation of angular 
momentum.  

We propose a non-typical cost functional (1), 
which, besides the velocity and a regularization 
term for the control, also includes the wss data 
information. This technique was already tested in 
[8] for blood flow assuming a non-Newtonian 
behavior in 2D idealized geometries.  

This paper is organized as follows: first, in 
section 2, we describe the control problem 
including the blood flow modeling equations, the 
viscosity model, the physiological parameters 
used and the criterion to attain. In section 3 we 
address the numerical approach while its 
implementation using COMSOL Multiphysics® 
is described in section 4. The numerical results 
related with the robustness and the efficiency of 
the proposed method, are presented in section 5. 
Finally, in section 6, we outline the conclusions 
about the reached results. 

 
2. Problem Description 

 
The main goal is to obtain a numerical 

solution in a realistic domain Ω, which coincides 
with available data measured in certain parts of 
the domain Ωpart, within a predefined error.  

We define an optimal control problem using 
a criterion according to our interests. In this work 
the criterion chosen is defined by the following 
cost functional: 
 
Min  J (u,h) = w1 | u - ud |2 dx +

Ωpart

∫

  +w2 |ws -wsd |2 dx
Γwall

∫ +w3 |∇h |2 dx.         (1)
Ωin

∫

 
Taking account the non-Newtonian viscosity 

behavior for the blood flow, the usual modeling 
system takes the form: 
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-∇⋅ (−pI+τ )+ ρ u ⋅∇( )u = 0 in Ω                  

∇⋅ u = 0 in Ω              (2)        

u = 0 on
                 
Γwall                      

u = h on Γin             (3)    

(-pI+τ )n = 0 on Γout                       

 
Here the domain Ω represents the lumen inside 
an artery that has been deformed by an 
aneurysm. The lumen is truncated by two planar 
surfaces. We call the proximal surface by Γin and 
the distal one by Γout. The interface of the lumen 
with artery wall is represented by Γwall These 
surfaces are represented in Figure 1. 

The cost function essentially measures the 
misfit between the data and the solution at 
several sections, Ωpart, as shown in Figure 1.  
 

 
 
Figure 1. Computational domain Ω; subset Ωpart; 
boundaries representation. 
 
The misfit considers the velocity field, 
represented by the variable u and wall shear 
stress magnitude measurements, represented by 
ws, and whose expression can be written as it 
follows 
 

ws = wss,wss =
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where n is the outward normal vector to the wall 
surface. We include the ws since it is an 
important indicator to predict vascular diseases, 
which is highly sensitive with respect to the 
geometry. We also include a regularizing term 
for the control function, h, to avoid numerical 
spurious minima, as suggested in [3]. The 
control function, h, corresponds to the velocity 
profile at the inlet boundary and p stands for the 
pressure. 

The variables ud and wsd represent the data 
for the velocity and wall shear stress magnitude 
registered in Ωpart and in Γwall respectively. The 
constants w1, w2, w3 are the parameters of the 
cost functional terms. Concerning system (2), the 
variable τ represents the extra stress tensor given 
by 

 
τ = 2µ(|Du |)Du,   

 
where  
 

Du =
∇u + ∇u( )

T

2
.  

 
The viscosity µ is defined using the non-
Newtonian Carreau model 
 

µ(γ ) = µ∞ + (µ0 −µ∞)
µ0 −µ∞

1+ (λγ )2( )
1−n
2

,  

 
with 
 

γ = 2Du :Du . 
 
The parameters considered for the viscosity 
model (see [1]) are given by  
 
µ∞ = 0.0032 Pa.s; µ0 = 0.0456 Pa.s; ρ=1050 kg/m3

λ =10.03 s;  n = 0.344.  
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For the boundary conditions we use the 
typical conditions in Hemodynamical problems. 
Therefore, in (3) we impose no slip conditions 
on the wall and Neumann homogeneous at the 
outlet.  

At this preliminary stage we will not use real 
data ud and wsd but rather generate it by solving 
the forward problem (2). To this end, we use the 
boundary conditions (3) and we set h to be the 
parabolic Poiseuille profile defined by  
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Here U0 = 0.419507 represents the maximum 
velocity and R is the inlet radius. The data 
generated as described above is included in the 
cost functional (1) and the control problem is 
then solved. 
 
3. Numerical Approach 
 

In this work we obtain the numerical solution 
by the Discretize then Optimize (DO) approach 
since it seems to be better in Hemodynamical 
problems when compared with Optimize then 
Discretize (OD) (see [4]). The DO approach 
consists in first discretizing the optimal control 
problem and then solve the finite dimensional 
optimization problem resulting from the 
discretization. We can then use the typical Finite 
Elements Method, and choose the appropriate 
finite dimensional spaces, for the unknowns and 
test functions, so that the existence of an 
approximated solution for problem (2) can be 
ensured (see [5]). 

The discretized problem can be expressed by  
 

Min  J (u,h) = w1 U −Ud Nu

2
+w2W (U )+w3 H Nh

2

s.a.

Q(U )+G(U )U + BTP = F
BU = 0

"
#
$

%$

 

 
where ||.||Nu and ||.||Nh are the resulting norms of 
the discretization and U=(Uh, H) includes the 
controlled velocity coefficients H and the 
uncontrolled ones, represented by Uh =Uh(H). 
 
 

4. Use of COMSOL Multiphysics 
 

We use COMSOL Multiphysics® to model 
the blood flow considering a generalized 
stationary Navier-Stokes system. The geometry 
representing the real artery is obtained from 
medical images and imported to COMSOL 
Multiphysics®. As already mentioned, the data 
to be used in the DA process is generated by 
solving the forward problem, with realistic 
parameters and boundary conditions. We then 
use the Optimization Module to define a cost 
function to be minimized.  

To solve the discretized problem which is 
nonlinear both with respect to the cost function 
and constraints we use the package Sparse 
Nonlinear Optimization (SNOPT) available in 
the Optimization Module of COMSOL 
Multiphysics® (see [6, 9, 10] for more details).  

To discretize the control variable we consider 
quadratic shape functions of the Lagrange type. 
The cost function is implemented through the 
Global Objective entry of the Optimization 
interface. We use the Cholesky QP solver to 
solve each linear quadratic problem, until the 
optimality conditions are fulfilled, within a 
tolerance of 10-6. 
 The blood flow model (2) is implemented using 
the Laminar Flow interface, where the viscosity 
law is introduced explicitly. For the 
discretization we use P1-P1 finite elements with 
streamline and crosswind diffusion stabilization. 
Then a physics based mesh, composed by 
tetrahedral and quadrilateral elements, 
corresponding to 180789 degrees of freedom for 
the velocity variables, is built. The nonlinear 
problem is treated with Newton’s method by 
using the direct solver PARDISO to solve each 
resulting linear system.  
 
5. Numerical Results 
 

The inlet surface Γin can be approximated by 
a circle with radius R=2.71015 mm. Hence the 
dimensionless Reynolds number associated to 
the entering flow is Rey=373, which is a 
physiological value.  

The results for velocity field solution of the 
forward problem can be observed on Figure 2. 
There the velocity vectors at the inlet and on 
Ωpart, are represented. We will use the later to 



Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge 

obtain ud and wsd as representatives of the true 
solution that we want to recover accurately.  

 

 
 
Figure 2. Velocity field profile for the forward 
problem. 
 
5.1 Flow reconstruction using DA 

 
Next, the control problem is solved using the 

cost function parameters 
w1,w2 ,w3( ) = 102,102,10−3( ) . We compare the 

results obtained with the forward problem with 
those obtained with the control problem. The 
Figure 3 illustrates the controlled velocity profile 
throughout the geometry and Figure 4 is an 
expansion of the saccular region highlighting a 
strong flow recirculation inside it, according to 
our expectations. 
 

 
 
Figure 3. Velocity field profile for the control 
problem. 
 

 
 
Figure 4. Flow recirculation inside the saccular 
region. 
 

The Figure 5 represents the contour of the 
wall shear stress magnitude, taking the red color 
to high stress and dark blue to low stress. 
Clearly, within the aneurysm the wall shear 
stress is lower and the highest values occurs in 
the biggest curvature between the saccular region 
and the vessel. 
 

 
 
Figure 5. Contour of the wall shear stress magnitude 
inside the saccular region. 
 

We measure the wall shear stress magnitude 
along a surface line passing through curvature 
where the stress is greatest and the result can be 
viewed in the following line graph, in Figure 6, 
where the highest value corresponds to the red 
region observed in Figure 5. 
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Figure 6. Wall shear stress magnitude as a function of 
arc length. Solid Cyan: pretended wss; black dash-dot: 
controlled wss. 
 
5.2 Testing with different ud and wsd profiles 
 

In order to prove the robustness of the 
proposed method, we test it with different data.  
For this purpose we generate two different “true” 
solutions corresponding to the inlet profiles 
given by 
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for ξ=4 and ξ=9. The last one is commonly used 
in the numerical simulations of blood flow in 
arteries (see [2]). Note that for ξ=2 we have the 
Poiseuille (parabolic) profile.  

We compared the results of the control 
problem with the data measurements, in the three 
tested cases, computing a relative error between 
u and ud given by 

Re =
| u - ud |

2

Ω

∫ dx
!
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Those comparisons may be viewed in the 
following Table 1: 
 

Table 1: Relative Errors for the different data inlet 
profiles. 

 
Profiles ξ=2 ξ=4 ξ=9 
Re 0.002066 0.003636 0.004843 
Cost 0.001735 0.006242 0.012496 

 

We can see that even if in the parabolic case 
the method performs better, the cost function is 
minimized and the errors are accurate in all of 
the tree cases. 

As already mentioned the control variable at 
the inlet plays the role of reproducing the inlet 
profile. In Figure 7 we can compare the inlet 
profiles used to generate data with the computed 
control. We can observe an almost perfect 
adjustment in the case ξ=2. The adjustment 
becomes less precise for ξ=4 and ξ=9, which is 
consistent with the conclusions of the Table 1. 
 

 
 
Figure 7. Solid grey: pretended inlet profiles; color 
wireframe: computed controls. Left to right: parabolic 
(ξ=2), semi-flat (ξ=4) and flat (ξ=9) profiles. 

 
In order to emphasize the wss significance in 

the proposed cost functional we solved the 
problem (1), (2) e (3) replacing the cost 
functional (1) by the following one 
 
Min  J (u,h) = w1 | u - ud |2 dx +

Ωpart

∫  w3 |∇h |2 dx
Ωin

∫

 
where we take w2=0, ie, not considering the term 
corresponding to the wall shear stress.  

Generating data with the parabolic inlet 
profile and solving the control problem, we 
confirm that the presence of this term is 
important to have a better precision in the results 
achieved. Both the velocity and the wss are 
better approximated when all the parameters are 
not null. These conclusions can be confirmed 
with the results shown in Table 2, where C1 
corresponds to the case (102, 102, 10-3) and C2 to 
(102, 0, 10-3). Vel term corresponds to the 
velocity term and Wss term to the wall shear 
stress term in the cost functional. 
 
 
 
 



Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge 

Table 2: Relative errors and values for the cost 
functional terms. 

 
Parameters C1 C2 
Re 0.002066 0.461553 
Vel term 2.5x10-12 3.3x10-6 

Wss term 6.7x10-7 0.006635 
Cost 0.001735 7.6x10-4 

 
Taking into account the obtained values, a 

worse approximation is expected for the control 
data with respect to the pretended inlet profile in 
the C2 case. We can confirm this with Figure 8 
where we can see that the maximum of the 
control variable is approximately half of the 
maximum pretended velocity. 

  

 
 

Figure 8. Color wireframe: pretended inlet profile; 
solid grey: computed control. 
 
6. Conclusions 
 

The work here presented gives an automatic 
approach to obtain realistic blood flow 
simulations representing the reconstruction of 
the blood flow profile from partially available 
measurements. If successfully adapted to time 
dependent models, it may be a useful tool for 
predictions in medical practices. As for time 
dependent simulations the vessel wall can no 
longer be considered rigid, therefore, the next 
stage should include the fluid-structure 
interaction between the blood and the vessel. 
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