### FEEDER PIPELINE WALL THICKNESS MEASUREMENT Using Pulse Eddy Current Technique

Suvadip Roy<sup>1</sup>, T. V. Shyam<sup>2</sup>, B.S.V.G. Sharma<sup>2</sup> & S.K. Pradhan<sup>1</sup>

<sup>1.</sup> Atomic Energy Regulatory Board, Mumbai

<sup>2.</sup> Bhabha Atomic Research Centre, Mumbai



#### The Indian PHWR



#### The Indian PHWR

- > The 220 MWe Indian CANDU Type PHWR are horizontal Pressure tube type reactors.
- There are 306 Pressure tube with each channel consisting of 12 Fuel bundles, with each fuel bundle consisting of 19 zircalloy clad Natural Uranium based fuel.
- The maximum temperature at the inlet and the outlet of the fuel channels Is 249 degree C and 293.4 degree C.
- The Pressure at the inlet being 101 Kg/cm<sup>2</sup> and 87 Kg/cm<sup>2</sup> respectively.
- > Heavy water is used as a coolant as well as a moderator.
- Each day around 8 fuel bundles are replaced from one coolant channel from one side and fresh fuel bundles are given from the opposite side using robotic fuelling machines.

#### What are feeder pipes

- Feeder pipes are used to carry the coolant from the headers in PHWR's to the pressure tubes and again to the Steam generator.
- > They are made up of carbon steel.(SA 333, grade 6)
- In the process of coming down from the headers they have bends and elbows. It is seen that they suffer from flow accelerated corrosion in the elbows.
- > The rate of corrosion is found to be maximum at the outlet elbows because of higher temperature.



Factors Affecting The FAC Rate

- Physical Factors :- It includes the Factors like Temperature and the Shear Stress distribution as well as the velocity profile. Proportional to Q\*V.
- Chemical factors :- Depends on the Oxygen concentration and the PH of the coolant.
- Geometrical factors :- Depends on the structure of the pipes. Bends leads to formation of turbulance.

#### Dimensions of Feeder pipes in 220 Mwe PHWR

| SL.NO | Nominal Size | ID (mm) | Feeder<br>Pipeline<br>WT(mm) | Feeder Elbow<br>WT(mm) |
|-------|--------------|---------|------------------------------|------------------------|
| 1     | 32mm         | 31.5    | 5.5                          | 6.35                   |
| 2     | 40mm         | 38.10   | 5.8                          | 7.15                   |
| 3     | 50mm         | 49.25   | 6.75                         | 8.70                   |
| 4     | 65mm         | 59      | 7.40                         |                        |

#### Pulsed eddy current testing

- > Earlier Ultrasonic testing was popularly used.
- > High MAN- REM consumption during application of couplant while surface preparation.
- > PECT is an advanced NDT technique which has evolved from conventional ECT and uses pulses for excitation other than using continuous sinusoidal single frequency or multi frequency excitation.
- Both Time domain as well as Time Frequency analysis can be done on the waveform to correlate with thickness.



#### **Principle of PECT**

- The Pulsed Excitation having multiple frequency components will have a flux of it's own.
- The Magnetic Flux will penetrate the specimen which in this case is Carbon Steel Feeder Pipes.
- The Varying flux in the specimen will induce a voltage on the surface of the specimen.
- Due to this induced voltage currents, called EDDY currents will flow in circular paths.
- Eddy Current will have a Magnetic field of it's own.( Opposite to the Magnetic field of excitation coil following Lenz law)
- The net Magnetic field sensed by the Receiver coil is the vector difference of the magnetic field of the Excitation coil and the eddy current.
- The voltage induced in the Receiver coil is due this change in Magnetic flux in the Receiver.

#### **Advantages of PECT**

- > As it uses pulses instead of single frequency excitation hence it has multiple frequencies and hence can give both surface and depth information.
- > Energy delivered to the coil per pulse is much higher than A.C. excitation.
- > Power consumption is also less in PECT than conventional ECT.
- > Instrumentation is also simpler.

### 2D Modeling Of PEC Probe



#### Results of PEC probe with air core modeling



Response of The Sensor With Transmitter Coil OD- 45mm and ID – 15mm

#### Results of Modeling of PEC probe with air core



Response of the sensor With Transmitter Coil having OD – 20mm and ID – 10 mm with 32 SWG wire gauge with Air Core.



#### Results of PEC probe with Ferromagnetic Core



Response of the sensor With Transmitter Coil having OD – 20mm and ID – 10 mm with 32 SWG wire gauge with Ferrite Core

#### Modeling results for different current Primary Excitation



For 5 Amps Excitation



For 10 Amps Excitation

#### Lift-Off Variation



# 3D Modeling of PEC probe with Flat Plate test specimen



#### **3D Modeling Results for Flat Plate specimens**





Decay Coefficients for various thickness of Carbon Steel Plates

**Curved Surface Modeling** 





#### **Experimental Validation for CS plates**





#### Experimental Validation on 65 NB pipe





#### Experimental Validation for 32 NB pipe





### **Results & Discussions**

- The Pulsed Eddy Current based sensor was able to predict the wall thinning phenomenon observed in Feeder Pipelines in PHWR's.
- The response showed that Internal Pickup based coil sensor with external Excitation coil and a Ferrite core would be the ideal choice of design.
- From the Time domain analysis of the received waveform, the slope of the logarithm of the received waveform was directly correlated with thickness.
- The simulation results gave a resolution of 0.3mm, whereas in case of Experimental validation resolution was less than 0.5mm.

#### Contd.

- The decay Coefficients scaled by a factor of 100 observed for the CS Plates for 5.5mm, 6.5mm and 7 mm thickness were 7.3,9.0 and 10.0 respectively whereas those for the CS tube simulated model were 1.08,1.92 & 3.
- The Decay Coefficients showed an increasing trend with Thickness in both the cases.
- The reduction in Decay coefficients for CS tube from CS plates was due to attenuation of Magnetic flux as the contact area between Cylindrical tube and plates is not a flat surface and there is always some air gap between the sensor & the specimen leading to attenuation of the magnetic flux.
- From the Decay coefficients the Thickness parameter can be easily differentiated both in case of Plates as well as Flat specimen.

## <u>References</u>

- M.S Safizadeh ,Z.Liu, D.S Foysrth and A.Fahr "Automatic Classification & Characterization of Hidden Corrosion using Pulsed Eddy Current Data", Institute of Aerospace Research, National research Council, Ottawa, Canada.
- 2. H. Subramanian, P. Madasamy, T.V Krishna Mohan, S. Velmurugan and S.V Narasimhan, "Evaluation of Wall Thinning due to Flow Accelarated Corrosion in the Feeder Elbows of Pressurized Heavy water Reactors", IGCAR newsletter 2012–2013.
- 3. C.S Angani , D.G Park , C.G Kim, P. Kollu and Y.M Cheong , "Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe", Journal of Magnetics , Volume 15, Number 4 , Pg: 204–208, 2010.
- 4. Details of Feeder Pipelines of Rajasthan Atomic Power Station 5 & 6.
- 5. Mathew Sadiku, "Engineering Electromagnetics", 5<sup>th</sup> edition OXFORD University Press

