Quantum Mechanics Applications Using the Time Dependent Schrödinger Equation in COMSOL Multiphysics®

A. J. Kalinowski East Lyme, CT, USA

Introduction: COMSOL is used for obtaining the quantum mechanics wave function $\Psi(x,y,z,t)$ as a solution to the time dependent Schrödinger equation. The probability determination of a particle being at a spatial point is extracted from $\int |\Psi|^2 dA$ over finite box zone ΔA ; as shown in Fig.2d.

Computational Methods: The governing equation for the behavior of a particle of mass m in the presence of a potential field V, is represented by the time dependent Schrödinger p.d.e. equation:

$$\nabla^2 \Psi + i \frac{2m}{\hbar} \frac{\partial \Psi}{\partial t} - \frac{2mi}{\hbar^2} V \Psi = 0 \tag{1}$$

In the α paper we consider only nonrelativistic "free particles", where V=0. Models are end driven by $\Psi_0 \text{Exp}(-i\omega t)$ where Ψ_0 is slowly increased from ϵ to 1.0 over 2 cycles to avoid a sudden startup. A traveling wave of wave number $k=J(a\omega)$ (Wave Length $\lambda=2\pi/k$; Per. $T=2\pi/\omega$) is created at the inlet. **Results**: • Fig.1 validates the wave guide

solution of COMSOL compared to an exact solution obtained with Laplace transforms.

Figure 1. Waveguide Validation Bar Model

• Fig.2 considers a stream of particles impinging upon the two slit model. Fig.2 a-c shows the Ψ traveling wave constructive and destructive interference after it passes through the slits and d) is the resulting banded $|\Psi|^2$ (probability density function).

Fig.3a resolves a bigger model, and 3b shows that at the cut, the probability density is lower in-line with the slit, than say above or below it. Evaluating $\int |\Psi|^2 dA_U \cdot \int |\Psi|^2 dA_M$ implies it is 1.74 times more probable that a particle is found in the Fig.2d Upper zone box than in the in-line Mid zone box.

Figure 2. Base Two Slit Model at 3 fixed times $\tau=t/T$

Figure 3.(a) 10/7 Times Wider Model at $\tau=t/T=9$ (b) $|\Psi|^2$ vs y/ λ @ Red Dotted Section Cut

Conclusions: The General Form PDE option successfully solved the time dependent Schrödinger equation. Banded groupings of particle locations as inferred by Fig3b are observed experimentally [1].

References: 1. K. W. Ford, "101 Quantum Questions", Harv. Univ. Pr., Camb. MA