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Abstract: Electrical impedance tomography 

(EIT) probes biological tissues with low 

amplitude alternating electrical fields through 

surface electrodes, and analyzes the medium's 

response to reconstruct its electrical 

characteristics. For accurate forward predictions, 

the complete electrode model (CEM) has to be 

taken into account. This has motivated the 

development of custom-built finite element 

numerical packages. While these codes may be 

tuned for specific applications, focusing for 

instance on real-time capabilities, the exploration 

of new features proves tough both in 

implementing and debugging. In this paper, the 

CEM is reviewed, and a means of implementing 

it into Comsol Multiphysics is proposed. A 

benchmark is carried out against a standard EIT 

library in 2D and 3D. Results suggest that the 

proposed workflow is consistent and efficient. 

Finally, reconstructions performed using in vitro 

data are presented to point out the completeness 

of the proposed numerical framework.  

 

Keywords: Electrical impedance tomography 

(EIT), forward problem, complete electrode 

model, sensitivity analysis, inverse problem, 

optimization.  

1 Introduction 

Electrical impedance tomography (EIT) 

consists in probing biological tissues with low 

amplitude alternating electrical fields, through 

surface source and detector electrodes, and in 

analyzing the medium's response so as to 

reconstruct its 3D electrical characteristics [1]–

[3]. EIT has been considered for a wide range of 

clinical applications, the most promising being 

continuous pulmonary function monitoring [4].  

Numerical modeling enables measurement 

prediction and sensitivity analysis (the forward 

problem), both required for parameter estimation 

(the inverse problem). Custom finite element 

method (FEM) codes are currently the standard 

ones in the EIT community.  

Underlying reasons are twofold. First, the 

complete electrode model (CEM) must be 

employed for accurate forward solving [5]. It is 

usually presented as non-easily implementable in 

commercial FEM packages [6], [7]. Second, the 

sensitivity analysis involves the assembly of a 

Jacobian matrix, the so-called sensitivity matrix. 

In its standard form, it requires low-level access 

(simplex-wise) to products of gradients of shape 

functions.  

This aspect together with the low 

requirements on the modeling (simple geometry, 

large regions of conductivity changes, real 

domain computations, first order shape functions, 

isotropy) militates for the development of custom 

numerical packages.  

The drawback of such an approach comes 

from the considerable resources required to 

address more sophisticated models, able to take 

into account adaptive high density geometrically-

accurate meshes, higher order shape functions, 

complex domain computations, complicated 

geometries, anisotropy, and to extend towards 

multimodality imaging. Then, how to achieve 

forward modeling remains a challenging task for 

the EIT community.  

In this work, we present a means of 

implementing the CEM and performing the 

sensitivity analysis using Comsol Multiphysics. It 

involves a change from the traditional EIT FEM 

derivation. Predicted electrical potential 

distributions are benchmarked against the results 

of the EIDORS open-source FEM Matlab toolbox 

[8]. Eventually, parameter estimation using in 

vitro data are shown.  

2 Methods 

2.1 Complete electrode model 

The most accurate formulation of the EIT 

forward problem is given by the CEM (Figure 1). 

Following the low frequency quasi-static 

approximation, it corresponds to the Poisson 

equation, with Neumann boundary conditions for 

current injecting electrodes, and Robin conditions 

to account for both the shunting effect of the 

conducting electrodes and the contact impedance 

layer between the electrode and the tissue [5].  
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Figure 1. CEM for EIT forward problem: the electrode 

in itself and the interface are modeled as a boundary 

condition.  

𝐸 electrodes {𝐸𝑒}𝑒=1
𝐸  are affixed on the 

surface 𝜕Ω of the medium under study Ω. The 

input data of the forward problem are: the 

electrical conductivity spatial distribution 

{𝜎(𝑥), 𝑥 ∈ Ω}, the contact impedances {𝑧𝑒}𝑒=1
𝐸  

and the current injection pattern  

𝐢𝑒 = (𝑖1, … , 𝑖𝐸)
𝑇 ∈ ℝ𝐸, of zero mean. The aim is 

to find the electric potential {𝑣(𝑥)} and electrode 

potentials 𝐯𝑒 = (𝑣1, … , 𝑣𝐸)
𝑇 ∈ ℝ𝐸, of zero mean, 

satisfying Eqn.  (1), with 𝐧 the outgoing normal 

vector for a closed surface.  

 

{
 
 
 

 
 
 

∇ ⋅ (−𝜎∇𝑣) = 0 ∀𝑥 ∈ Ω

𝑣 + 𝑧𝑒𝜎∇𝑣 ∙ 𝐧 = 𝑣𝑒 ∀𝑥 ∈ E𝑒

∫ 𝜎∇𝑣 ∙ 𝐧 d Γ
E𝑒

= 𝑖𝑒 ∀𝑒 = 1…𝐸

𝜎∇𝑣 ∙ 𝐧 = 0 ∀𝑥 ∈ ∂Ω\⋃E𝑒

𝐸

𝑒=1

   (1) 

 

Usual derivations of the weak formulation of 

Eqn. (1) following the Galerkin method lead to a 

linear system with an augmented stiffness matrix, 

here called the admittance matrix 𝐘. For linear 

shape functions, with the approximated nodal 

value of 𝑣 denoted 𝐯𝑛 and 𝑁𝑛 nodes,  

𝐘 ∈ ℝ(𝑁𝑛+𝐸)×(𝑁𝑛+𝐸) is decomposed into 4 blocks, 

Eqn. (2), in which 𝐘𝑀(𝜎) matches the bulk 

equation derivation and the other blocks translate 

the handling of boundary conditions, 𝟎𝑁𝑛 being 

the null vector of specified dimension [9]. 

 

𝐘 [
𝐯𝑛
𝐯𝑒
] = [

𝐘𝑀(𝜎) + 𝐘𝑍 𝐘𝑊
𝐘𝑊
𝑇 𝐘𝐷

] [
𝐯𝑛
𝐯𝑒
] = [

𝟎𝑁𝑛
𝐢𝑒
]   (2) 

2.2 Data prediction 

The approach we present here is quite 

different in that the discretization of Eqn. (1) does 

not involve an augmented stiffness matrix. The 

diffusion partial differential equation is treated as 

usual in FEM derivations. But, on the contrary of 

the EIT traditional approach, the CEM boundary 

conditions are directly incorporated into the bare 

admittance matrix.  

Indeed, for each electrode 𝑒, the boundary 

conditions boil down to the expression of the 

normal current density, −𝐧 ⋅ 𝐣 =
𝑣𝑒−𝑣

𝑧𝑒
, with the 

electrode potential specified as  

𝑣𝑒 =
1

‖𝐸𝑒‖
∫ 𝑣 dΓ
𝐸𝑒

+ 𝑧𝑒𝑖𝑒. Combining these 

relations leads to Eqn. (3), with ‖𝐸𝑒‖ the surface 

of electrode 𝐸𝑒. 

 

−𝐧 ⋅ 𝐣 =
1

𝑧𝑒‖𝐸𝑒‖
(∫ 𝑣 dΓ

𝐸𝑒

+ 𝑧𝑒𝑖𝑒 − ‖𝐸𝑒‖𝑣) (3) 

 

Eqn. (3) basically provides a means of 

coupling both a contact impedance and a current 

injection in a single Neumann boundary 

condition.  

As for the admittance matrix, Eqn. (3) 

translates into adding extra elements to the 

stiffness matrix for implementing the integrate 

based on quadrature rules. But in this 

interpretation, its overall size, 𝐘(com) ∈ ℝ𝑁𝑛×𝑁𝑛  

for linear shape functions, is not modified by 

taking into account the CEM boundary 

conditions.  

Furthermore, this formulation is compatible 

with most FEM packages, such as Comsol 

Multiphysics, in which the implementation is 

carried out. This allows to use all the numerical 

methods already available for handling the 

computations.  

The workflow for implementing the proposed 

scheme in Comsol is the following. Each 

electrode affixed onto the imaging domain is 

described geometrically only by a boundary (edge 

in 2D, surface in 3D), without considering its 

thickness. It is assigned an integration coupling 

operator, and two variables for the value of the 

contact impedance 𝑧𝑒 and the flowing current 𝑖𝑒. 

This allows to specify a normal current density 

boundary condition to satisfy Eqn. (3), within an 

electric current physics (AC/DC module). We 

chose the Pardiso solver to compute the solution 

with a 10−6 relative tolerance.  

In EIT, different source positions along with 

detectors are usually addressed. Comsol built-in 

parametric sweep allows addressing the different 

electrode combinations, and the Livelink for 

Matlab provides flexibility for more intricate 

source-detector configurations.  
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2.3 Sensitivity analysis 

The sensitivity analysis establishes how each 

elementary volume in the imaging domain will 

contribute to the measurements. Following the 

adjoint approach, the sensitivity of the 

measurement 𝑢𝑠𝑑 when source is 𝑠 and detector 𝑑 

given a variation of the conductivity 𝜎𝑐 of a 

control volume Ω𝑐 follows Eqn. (4), with 𝐼 the 

injected current.  

 

𝜕𝑢𝑠𝑑
𝜕𝜎𝑐

=
−1

𝐼
∫ ∇𝑣(𝑖𝑠) ⋅ ∇𝑣(𝑖𝑑) dΩ
Ω𝑐

   (4) 

 

It involves the gradients of electric potential 

in source and detector configurations, 

respectively indexed 𝑠 and 𝑑 (Figure 2).  

 

 
Figure 2. EIT sensitivity analysis: (left) source 

configuration matching the experimental situation; 

(right) virtual configuration in which source and 

detector have been interchanged.  

Usually in EIT, Ω𝑐 is chosen to be equal to a 

simplex in FEM [10]. In Comsol, the evaluation 

of quantities follows a geometric approach, and 

gradients of shape functions along mesh elements 

are not accessible and prevent from computing 

element-wise sensitivity patterns. To overcome 

this apparent limitation, we shift the focus on 

nodal-wise sensitivity computations [10], [11]. 

The control volumes in Eqn. (4) are chosen 

equal to the Voronoï cells Π𝑛, which form natural 

influence domains for each node 𝑛 in the imaging 

domain. The electric fields are then approximated 

by a constant value in each Voronoï cell, the one 

computed at the mesh vertices. The sensitivity 

computation then amounts to Eqn. (5), in which 

∇𝐯𝑛(𝑖
𝑠) and ∇𝐯𝑛(𝑖

𝑑) are the approximations of 

the electric field computed respectively in the 

source and detector configurations.  

 

𝐒𝑠𝑑,𝑛
𝑑 =

𝜕𝑢𝑠𝑑
𝜕𝜎𝑛

=
−‖Π𝑛‖

𝐼
∇𝐯𝑛(𝑖

𝑠) ⋅ ∇𝐯𝑛(𝑖
𝑑)   (5) 

 

Within Comsol, computing the electric field is 

quite straightforward and allows sensitivity 

patterns to be determined for any source-detector 

configurations.  

This defines a forward solver for EIT, as a first 

component in a Comsol model.  

2.4 Parameter estimation 

Two options can then be considered for 

parameter estimation: (i) any EIT inversion 

algorithm can rely on the forward solver to fit the 

model to the data, e.g. running studies from 

Matlab [2]; in particular, the source and detector 

electric fields can be used directly in a transport 

setting [12]; (ii) the Comsol Optimization module 

can perform the inverse problem.  

An optimization node is added to the forward 

problem component to compute the cost function 

residuals. A second component is added to handle 

the optimization, through a Levenberg-Marquardt 

algorithm (LM) (Figure 3).  

 

 
 

Figure 3. Synopsis of the inverse problem handling 

within Comsol using the optimization module, to 

compute the cost function residuals and perform the 

inversion with a LM algorithm.  

2.5 Benchmarking, interfacing with EIDORS 

Since most EIT research groups are currently 

using EIDORS [8] for the computations of the 

forward problem, we want to compare the 

performance of this work’s derivation of the CEM 

in a FEM setting along with its Comsol 

implementation with its EIDORS counterpart on 

Matlab.  

To be able to benchmark both ways of solving 

the forward problem, the same assumptions have 

to be considered. Computations are led in the real 

domain, with 1st order shape functions to 

approximate the electric potential. Since the 

conductivity distribution is evaluated by Comsol 

at Gauss points, the vertices for linear 

approximation, and EIDORS considers a 

piecewise constant discretization of 𝜎 over mesh 

elements, the comparison is made on 
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homogeneous domains (constant 𝜎). Various 

contact impedance values are considered.  

The interfacing with EIDORS involves 

constructing a corresponding forward model 

structure fmdl. The Comsol Livelink for Matlab 

interface enables extracting the mesh information 

i.e. the vertices, the mesh connectivity, and the 

electrode pavements from which fmdl can be 

constructed.  

The figure of merit (FoM) used for 

comparison is the maximum of the relative error 

over all the nodes or the source-detector 

configuraitons. State of the art EIT 

instrumentation achieves a relative precision of 

0.1 % on measurements (electrode potentials), so 

we expect the numerical modeling to be precise 

up to a few order of magnitude lower, to avoid 

bringing further imprecisions into the severely ill-

posed EIT inverse problem. Regarding the 

interior potential used for sensitivity 

computations, there are currently no known upper 

limits for the precision of the computation, and 

the required accuracy remains an open question.  

3 Results 

3.1 Verification of correct performance 

The correctness of the FEM derivation along 

with its Comsol implementation was first verified. 

To that end, simulations were performed in two 

ways.  

First, a model in which the analytic is known 

was considered. A mesh of a cube with two 

electrodes placed on opposite faces was built, in 

which the electric field is constant in the 

perpendicular direction to the electrodes. The size 

of the cube, the number of elements, the 

homogeneous conductivity and the contact 

impedances were varied. The FoM between the 

Comsol internal potential predictions and the 

analytical solution was inferior to 10−6 in every 

configuration, and substantially lower when the 

contact impedances were superior to 10−3Ω.m2. 

Regarding electrode potentials, the FoM was 

inferior to 10−10.  

Second, the overall behavior of the 

predictions was studied with a more realistic 

model. To that end, a 2D numerical phantom was 

examined, featuring a circular domain of 500 µm 

radius with 14 uniformly distributed electrodes 

(Figure 4).  

 

 
Figure 4. 2D numerical phantom: (left) electrodes are 

highlighted in yellow; (right) mesh refined at the 

electrode sites, including 6879 nodes. 

Considering a homogeneous conductivity of 

1 S.m−1 and an injected current of 1 mA, the 

overall behavior of the predictions was 

epitomized for an adjacent projection (Figure 5).  

 

 
Figure 5. Example of an adjacent projection; left. 

equipotentials and uniformly distributed current density 

streamlines; right. potential distribution (V).  

A symmetry is observed in the distribution of 

equipotentials and current density streamlines 

relative to the 0V equipotential, consistent with 

the choice of the reference potential in the center 

of the domain.  

The boundary voltage and normal current 

density were computed for a varying contact 

impedance 𝑧𝑒 of all electrodes from 10−6 Ω.m2 

to 1 Ω.m2 (Figure 6) (typical values for metallic 

electrodes in contact with biological tissues).  

 

 
Figure 6. Boundary electric potential (left) and normal 

current density (right) for varying 𝑧𝑒 .  

The boundary potential shows a plateau 

appearance, more pronounced as the contact 
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impedance decrease. In turn, the normal current 

density exhibits edge effects.  

A zoom on one source electrode (Figure 7), 

and on one detector electrode (Figure 8) were also 

plotted, for varying 𝑧𝑒. 

 

 
Figure 7. Boundary electric potential (left) and normal 

current density (right) of a source electrode.  

 
Figure 8. Boundary electric potential (left) and normal 

current density (right) of a detector electrode. 

The potential is especially influenced for high 

𝑧𝑒. As for the normal current density, the integrate 

over a detector is null: no net current flows. Edge 

effects are particularly noted.  

3.2 Benchmarking, 2D and 3D 

Considering the 2D numerical phantom 

depicted above, an example of one admittance 

matrix computed from the proposed FEM 

derivation by Comsol was plotted (Figure 9).  

 
Figure 9. Sparsity plot of an example of a 2D numerical 

phantom admittance matrix under the proposed FEM 

derivation, extracted from Comsol.  

The internal renumbering puts the nodes 

belonging to the electrodes in the first position (51 

nodes per electrode edges in our case). The taking 

into account of the CEM boundary conditions 

translates into off diagonal extra elements for 

these nodes.  

The Comsol implementation was compared 

with its EIDORS counterpart for varying contact 

impedance 𝑧𝑒 of all electrodes from 10−6 Ω.m2 

to 1 Ω.m2. The FoM on nodal potentials was 

inferior to 10−10 and on electrode potentials 

inferior to 10−12.  

The comparison was also led in 3D on a 

numerical phantom (Figure 10). The same 

parameter variations were used as in the 2D case. 

 

    
Figure 10. 3D numerical phantom: (left) electrodes are 

described only by their surface on the domain 

boundary; (right) relatively coarse mesh used for 

comparison purposes, using 95054 nodes.  

The overall behavior was studied in one 

adjacent projection (Figure 11).  

 

  
Figure 11. Adjacent projection; left. 3D potential 

distribution along with 11 iso-potential values (V); 

right. 2D cross-section in the half-height of the 

phantom featuring the potential distribution (V) and the 

amplitude controlled current density streamlines.  

The FoM on nodal potentials was inferior to 

10−4, but varies strongly with the value of the 

contact impedance: the FoM lowered by several 

order of magnitude as the order of magnitude of 

the contact impedance increased. On the electrode 

potentials, the FoM was inferior to 10−7 in every 

situation.  

Regarding the computational time, 

considering 14 projections, the overall process of 

the forward solver (mesh, assembly, solving) took 

less than 10 s within Comsol for a number of 

degrees of freedom between 3,000 and 50,000 in 
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2D. In comparison, EIDORS took 20 s only for 

the assembly and solving.  

In 3D, using 210,725 nodes, EIDORS took 

330 s, while Comsol used 550 s to handle all the 

process. This could be further reduced with 

computation parallelization in the latter case.  

3.3 Parameter estimation, simulated data 

Using Comsol optimization module, an 

absolute reconstruction was performed (Figure 

12), using simulated data (inclusion 2 S.m−1 

versus a background of 1 S. m−1, and an initial 

guess at background 𝜎).  

 

"  
Figure 12. Static inverse problem on synthetic data 

using Comsol optimization module: the inclusion is 

correctly recovered in the Levenberg – Marquardt non-

linear setting; the expected location is indicated with 

the black circle; the corresponding profile on the first 

diagonal shows discontinuities due to the discontinuous 

Galerkin elements used in the inversion mesh.  

The recovery of the inclusion indicates the 

completeness of the framework proposed to 

handle both the forward problem and the inverse 

problem using Comsol.  

3.4 Parameter estimation using in vitro data 

Differential measurements were acquired 

with a custom-built experimental platform on a 

saline phantom similar to the one used in the 

numerical simulations [13]. Inclusions were 

simulated with conductive metal cylinders of 

diameter 1 4⁄  and 1 8⁄  of phantom diameter.  

One step Tikhonov regularized 

reconstructions were performed [14], with a 

hyper-parameter chosen by general cross-

validation [15] (Figure 13). Sensitivity 

computations were runned inside Comsol using 

simplices for mesh elements.  

Both inclusions were correctly located inside 

the imaging domain. Artefacts inherent to the low 

spatial resolution of EIT were to be seen. The 

conductivity contrast was not recovered in this 

case due to the linear inversion algorithm.  

 
Figure 13. In vitro difference reconstructions within 

Matlab: (left) 3D conductivity iso-values (threshold at 

¼ of maximum value); (right) cross-section of the 

conductivity map in the cylinder middle-plane.  

 

4. Discussion 

The FEM derivation and corresponding 

Comsol implementation of the EIT forward 

problem proposed here enable avoiding the 

representation of the thickness of electrodes 

(standard in previous Comsol implementations), 

and allow benchmarking with other toolboxes.  

The validation step shows a consistent overall 

behavior of the forward solver, with the expected 

distribution of both current density streamlines 

and equipotentials. The review of boundary 

electric potential and normal current density 

exhibits the interface effects at the electrode – 

tissue junction, and their fluctuations with varying 

contact impedances, either on source or detector 

electrodes. 

The implementation compares favorably with 

EIDORS on 2D and 3D with relative errors on 

nodal and electrode potential inferior to 10−4 as a 

whole. The main difference between both solvers 

comes from the way the stiffness matrix, i.e. the 

admittance matrix, is derived. In this work, no 

extra dimensions are added to account for the 

CEM boundary conditions. The electrode 

potential are deduced during the post-processing 

in Comsol.  

Regarding reconstruction capabilities, both 

ways to handle the parameter estimation was 

evaluated: inside Comsol or with external Matlab. 

Static inversion is effective with Comsol, while 

one step time difference reconstructions are quite 

conclusive using the proposed forward solver. 

The inclusions are located, with artefacts and a 

poor spatial resolution inherent to EIT. With 

further regularization to limit the under-

determination of the inverse problem, for instance 

using a dual loosen mesh for inversion, the 

artefacts might be reduced [10].  
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5. Conclusion 

In this paper, we have presented an 

implementation of the EIT forward problem in a 

generalist FEM package while fulfilling the 

complete electrode model boundary conditions, 

combining current injection with contact 

impedance on a single boundary. In the models we 

studied, we benchmarked our Comsol 

implementation with the standard matlab EIT 

library EIDORS.  

In this respect, the Comsol Multiphysics 

environment proves consistent and provides a 

flexible numerical platform. It can be leveraged to 

explore more sophisticated models without 

necessitating numerous developments (higher 

order shape functions, complex domain 

computations multiphysics imaging). It appears as 

a complementary tool alongside custom codes.  

The proposed forward solver is generic, and 

can be adapted to other electromagnetic studies, 

to compute the potential distribution, e.g. in 

transcranial direct current stimulation (tDCS), 

electroencephalography (EEG), and deep brain 

stimulation (DBS).  
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