

Temperature propagation during cell stacking processes for lithium-ion cells

Gerd Liebig Oldenburg October 14-16 2015

NEXT ENERGY

EWE-Forschungszentrum für Energietechnologie e.V.

Summary

EWE-Forschungszentrum für Energietechnologie e.V.

- Introduction / Productions processes during battery stack assembly
- Modeling Approach
- Numerical Model (COMSOL Multiphysics[®])
- **Experimental Study and Simulation Results**
- Validation
- Short-term Thermal Treatment / Laser welding
- Conclusions and Outlook
- Acknowledgements

Productions processes during battery stack assembly

EWE-Forschungszentrum für Energietechnologie e.V.

Elevated temperatures on the cell surface influences the cell behavior (capacity loss, power fade, safety risks) negatively

Welding	Bonding	Pretreatment
Laser welding	hot staking	plasma pretreatment
ultrasonic	Hot gluing	UV curing
joining	V	Audi Vorsprung durch Technik

Modeling approach

EWE-Forschungszentrum für Energietechnologie e.V.

3D cell geometry of the simulated Li-ion cell with thermal sensor spots

Numerical Model (COMSOL Multiphysics[®])

EWE-Forschungszentrum für Energietechnologie e.V.

Heat transfer equation: heat generation and conduction $\rho C_p \frac{\partial T}{\partial t} = \operatorname{div}(\lambda \nabla T) + Q$

Material relationship of heat capacity, heat conductivity and density

 $\lambda = \alpha \rho C_p$

Boundary conditions represent natural convective cooling with a heat transfer cofficient *h* and a heat load as a space-homogeneous time dependent temperature function *g*

$$-\lambda \nabla T = h \left(T - T_{ext} \right)$$

T = g

Comsol Interfaces: "Heat transfer module" and "CAD Import module"

Experimental Study and Simulation Results

EWE-Forschungszentrum für Energietechnologie e.V.

Thermal stressing with the heat stamp for 60 s at a heat rate of 50 W

Temperature distribution [°C] in a prismatic cell at the experimental setting

Validation

EWE-Forschungszentrum für Energietechnologie e.V.

Simulated data vs. Experimental data \rightarrow good agreement

Temperature profiles and simulation errors for the experimental validation

Short-term Thermal Treatment / Laser Welding

EWE-Forschungszentrum für Energietechnologie e.V.

A local peak temperature of 180 °C is reached at the jelly roll

Audi Vorsprung durch Technik

Temperature propagation [°C] in the prismatic cell and the Jelly roll

Conclusions and Outlook

EWE-Forschungszentrum für Energietechnologie e.V.

- A thermo-physical 3D model of a commercial lithium-ion cell was developed and validated.
- Temperature distribution inside a lithium-ion cell during battery stack assembly were simulated.
- Further studies on various stress scenarios representing battery stack assembly at elevated temperatures will be performed.

Acknowledgements

EWE-Forschungszentrum für Energietechnologie e.V.

Dr. Lidiya Komsiyska

Dr. Stanislav Vasić

Pamina Bohn

Thank you for your attention! Questions?

NEXT ENERGY

EWE-Forschungszentrum für Energietechnologie e.V.

