Calculation of Surface Acoustic Waves on a Piezoelectric Substrate using Amazon[™] Cloud Computing

U. Vogel^{1,2}, M. Spindler¹, A. Winkler¹, T. Gemming¹ ¹IFW Dresden, SAWLab Saxony, PO Box 270116, D-01171 Dresden, Germany

²TU Dresden, Institute of Materials Science, D-01069 Dresden, Germany

Introduction:

Lab

We present benchmark comparisons between a local desktop workstation (PC) vs. Amazon Web ServicesTM (AWS) for the complex calculations of <u>Surface Acoustic Waves</u> (SAW) on a piezoelectric substrate in 3D.

Model settings:

- LiNbO₃ crystal (128° YX) (Comsol database)
- Rayleigh SAW with $\lambda = 150 \ \mu m$ [1]
- Excitation: $V = V_0 \sin(2\pi f t)$, f=26.6 MHz, V₀=1V
- One pair of electrodes

Computational settings:

- Comsol Multiphysics® 5.1
- Time dependent (Δt ≈ 6 ns) iterative multigrid solver (GMRES) over 5 cycles
- RAM optimized AWS machine (EC2 r3.8xlarge)
- Model: 5851188 degrees of freedom

 Table 1. Comparison: Workstation vs. AWS

	Workstation	AWS "r3.8xlarge"
RAM	32 GB	244 GiB
	1 x	32 x
CPU	<i>Intel</i> ® <i>Core</i> ™ <i>i</i> 7-2600	Intel® Xeon™ E5-
	@ 3.40 GHz	2670 v2 @ 2.50 GHz
Disc	1 x 2 TB (HDD)	2 x 320 GB (SSD)
		Win Server 2012

- @ $\lambda/4 = 37.5 \mu m$, aperture width of 1 mm
- Low reflecting vertical boundary conditions for P and S waves [2]
- Equidistant mapped mesh: element size: 18.75 μ m x 18.51 μ m \rightarrow 8 elements / λ (fig. 1)

Figure 1: Mapped mesh consisting of equidistant elements (160 x 108) on the substrate surface (3 x 2 mm²), swept by 10 elements with a ratio of 20 throughout the substrate thickness (300 μ m).

System

Win 7 x64 SP1

6.2

Results:

	Workstation	AWS "r3.8xlarge"
Calculation time	6 days 1 hour	2 hours 30 min

- AWS approx. 70x faster calculation
- Approx. 60 GB RAM utilization (in both)
- 50% CPU utilization (AWS), see fig. 2

Figure 3: Rayleigh SAW (vertical surface displacement) generated by harmonic electrical excitation of finger electrode in the middle of the substrate.

Figure 2: CPU Utilization in during model calculation in AWS

- SAW propagation in all directions
- Diffraction due to limited aperture width
- Non-symmetric wave due to inaccurate material parameters for this crystal cut

References:

- G. S. Chung and D. T. Phan, Finite Element Modeling of Surface Acoustic Waves in Piezoelectric Thin Films, J Korean Phys Soc, 57, 446-450 (2010)
- V. Marra and S. Datta, Two-port Piezoelectric SAW Device (ID: 19155), Comsol Multiphysics GmbH Application Gallery, <u>www.comsol.de/model/two-port-piezoelectric-saw-</u> <u>device-19155</u>, (Accessed 01.09.2015)