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Pin = 50 W

t = 160 s
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Mesh generation in COMSOL®

• 811 988 tetrahedral elements (440 581 elements 
for the water sample).

water
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Governing equations

• Heat transfer equation (HT module)
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Thermophysical properties
of pure water*

Microwave absorbed power (W.m-3)

 Resolution of the Maxwell’s equations

* From the COMSOL® material library



Model 
Design

Microwave 
heating

Simulation
results

Experiments
vs. model

Conclusion/ 
Perspectives

5

Governing equations

• Electric field propagation (RF module)

Maxwell’s equations for a TE10 rectangular waveguide 
(sinusoidal time-varying fields with w = 2p f)

Qabs : volumetric heating rate (W.m-3) 

s : Electrical conductivity (S/m)

f : frequency of microwaves (2.45×109 Hz)

e0 :  permittivity of free space (F.m-1)

er’’ : relative dielectric loss factor

Elocal: local electric field strength (V.m-1)
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Governing equations

• Fluid flow modeling (CFD module)

Incompressible Navier-Stokes equations
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u, v, w : velocity field components following x, y and z directions

: density of water (kg.m-3)

P: static pressure (Pa)

: dynamic viscosity of water (Pa.s)
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Governing equations

• Initial & boundary conditions
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Material properties = f (q °C)

• Dielectric properties of pure water* (2.45 GHz)

* Zhang, Q., T. H. Jackson and A. Ungan. Numerical modeling of microwave 
induced natural convection. International Journal of Heat and Mass Transfer 
43: 2141-2154 (2000).
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Temperature distribution at t =160 s

q (°C)

At the end of 
microwave processing, 
the surface of the 
water is close to 70 °C 
while the external 
temperatures of the 
walls range from 55 to 
60 °C (PTFE is only 
heated by conduction)
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v (m/s) q (°C)

 waves, Pin = 50W , f=2.45GHz

water

PTFE® 
support 
plate

Velocity fields and temperature variations = f (t)

x

z
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v (m/s)

Cross sections areas of velocity fields
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Cross sections areas of velocity fields
at t = 160 s

At the end of processing, 
the gravitationally driven 
flow of water leads to max 
velocity gradients around 
≈ 6 mm/s

v (m/s)
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Cross sections areas of temperature and electric field shape 
at t = 80 s

q (°C)

E/ E0

 The hot spots are depicted at the near 
bottom zone of the liquid-container 
interface
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Experimental validation of numerical results

fairly good agreement between exp. vs. numerical model
As Gr* ↗, microwave induced natural convection ↗ as a function 

of processing time
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T1, T2 and T3:
2 mm, 5 mm and 
10 mm below the 
upper water 
surface

- 2 mm
- 5 mm
- 10 mm
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Highlights

• « Modeling microwave heating of a liquid sample in a 
static configuration »:

Non uniform inner temperature distribution within a 
small liquid sample (8.5 mL)

Modeling enables to locate precisely the hot spots.

The Navier-Stokes equations must be coupled to the 
heat transfer and the Maxwell’s equations in order to 
give realistic results.

High computational resources are needed for a strong 
coupling between the differential equations.
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Future prospects

• Extension of this preliminary study to investigate 
the development of microwave applicators 
dedicated to liquid phase processing under 
continuous flows.

Thank you for your attention,


